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Preface

Solids often operate in contact in the units of machines and structures. Indeed, the
elements of movable and immovable joints of machines and structures operate
under the conditions of cyclic contact either due to their functional purposes or due
to the influence of the operational factors (e.g., vibration). The defects of the contact
surfaces or even the fracture of joints under cyclic contacts may lead to a decrease
in the efficiency or even to the loss of the serviceability of the entire machine or
structure. The problem of guaranteeing contact strength, durability, and wear
resistance of the mechanical components is an important scientific and engineering
problem. Within the framework of this problem, it is important to study the nature
and causes of the typical defects (damages) appearing in tribojoints and give a
theoretical description of the processes of their formation.

One of the most common types of mechanical damages formed in solids in the
zone of their cyclic contact is cracking. The cracks appearing and propagating in the
surface layers of contact zones of the bodies may form pits, pitting, spall, spalling,
gaps, checks, crumbling, etc., on the surfaces of the bodies and, thus, cause the loss
of the serviceability of contact surfaces. In some cases, the cracks formed near the
surfaces initiate the process of propagation of the main crack and lead to the com-
plete destruction of the products (parts). Under the conditions of cyclic contact of
deformable bodies, the processes of initiation and propagation of cracks in the
contact zone are observed mainly in cases where the contact interaction is realized in
the form of rolling, fretting fatigue, pulsed (pulsating) contact, friction fatigue, etc.

The phenomenon of contact rolling fatigue is typical of tribosystems (tribojoints)
in the form of wheel–rail systems, backup and working rolls of the rolling mills,
various types of gearings, ball and roller bearings, etc.

The phenomenon of fretting fatigue is realized in the units of machines and
structural joints, whose surface elements suffer insignificant fluctuating mutual
sliding caused mainly by the cyclic loads or in-service vibrations. This is especially
pronounced for joints in the bodies and casings of various means of transportation
(cars, aircraft, spacecraft, and ships) and numerous industrial structures (turbines
of the nuclear power plants, gas turbine engines, oil platforms, bridges, and
pipelines), as well as for various spline, bolt, and key connections. It is known that
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the cracks appearing in the contact zone of elements of the units and joints suffering
fretting fatigue may lead to a severalfold decrease in the durability of machines,
which can be very dangerous.

The fracture of friction surfaces is called friction fatigue. It is observed, e.g., in
sliding bearings, friction clutches, braking elements (brake shoes and disks), etc.

The contact interaction in the form of pulsed contact takes place under the
conditions of cyclic compression of two bodies (or their parts) by normal (or, in
general, inclined to the contact surface) forces with possible disconnection of the
contacting bodies. This interaction leads to the appearance of arc or annular fatigue
cracks in the contact zone and is often accompanied by the phenomenon of fretting
corrosion in this zone.

All indicated contact interactions are responsible for the contact fatigue of the
material, i.e., in other words, the process of preparation and propagation of fracture
in the surface layers of the materials of joined parts whose surfaces operate under
the action of variable cyclic contact loads.

The problem of contact strength and durability of various mechanical systems is
an urgent scientific and engineering problem. It is extensively studied by the
researchers and engineers in scientific centers of many countries.

In the proposed monograph, we present both the results of investigations of the
authors and the results of available literature publications in the field of fracture
of the surface layers of bodies operating under the conditions of cyclic contact
(including tribojoints). We propose a new procedure (i.e., the computational models
and algorithms) aimed at the computer investigation of the paths of crack propa-
gation and the specific features of formation of typical contact fatigue damages
(pitting, spalling, gaps, crumbling, squats (“dark spots”), checks, cavities etc.) in the
contact area. We present examples of evaluation of the residual service lifetime of
tribojoints, including the rolling (wheel–rail systems, backing and working rolls
of the rolling mills) and fretting (shelf-blade gas turbine engines (GTE)) couples
according to the criteria of formation of typical contact fatigue damages in these
couples. We also formulate some recommendations concerning the possibility of
optimization of the operating parameters of joints (contact loads, friction/lubrication
in contact, cyclic crack growth resistance of the materials in transverse shear and
normal opening, etc.).

The monograph consists of five chapters.
Chapter 1 represents an overview of the methods used for the evaluation of the

contact durability of tribojoints, including, in particular, rolling and fretting couples.
We analyze the results of investigations in the related scientific fields, which can be
regarded as basic for the proposed methods, namely, in the field of mechanics of
fatigue fracture of bodies in cyclic contact and in the field of contact problems
of the mathematical theory of cracks. We also present a survey of the well-known
scientific and engineering publications dealing with the analyzed problems.

Chapter 2 contains the key elements of the theory of fatigue fracture, namely, the
main stages and fatigue characteristics of the materials; the criteria and diagrams of
fatigue fracture, and the characteristics of fatigue crack growth resistance of the
materials. We present a brief description of the specific features of cyclic contact

vi Preface
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interaction accompanied by the crack initiation in the nearsurface contact zone:
rolling, rolling with sliding, fretting fatigue, pulsed contact, friction fatigue, etc. We
also describe typical contact fatigue damages formed by cracks on the working
surfaces of elements of the tribojoints. In the same chapter, we propose a new
computational model for the investigation of the fracture processes and evaluate the
contact residual lifetime of the bodies (elements of tribojoints) under the conditions
of their cyclic interaction. The model is based on the step-by-step determination of
curvilinear paths in the zone of cyclic contact of the elements of tribojoints
depending on operating parameters and the mechanisms of crack propagation:
transverse shear (mode II) or normal opening (mode I) in the process of deformation
of the material). The algorithms used for the construction of the paths of crack
propagation take into account the changes in the stress–strain state caused both by
crack elongation and the motion of the counterbody (variations of the load) in the
contact cycle and also possible changes in the mechanism of fracture caused by
crack propagation and friction between the crack faces. The proposed computa-
tional model is developed in Chaps. 4 and 5 for two separate types of contact
interaction of the bodies: rolling with sliding and fretting fatigue.

Chapter 3 is devoted to the mathematical method of modeling the deformation
and fracture process for elements of moving and fixed joints (tribojoints). We
propose singular integral equations (SIE) for the elastic half-plane weakened by a
system of curvilinear cracks under the action of various model contact loads applied
to the boundary of the half-plane. We briefly describe the Gauss–Chebyshev
method of mechanical quadratures that enables one to efficiently construct the
numerical solutions of these SIE. We also deduce the relations for the stress
intensity factors (SIF) at the crack tips can be expressed via the solutions of SIE for
inside and edge curvilinear cracks in the half-plane. In this chapter, we present both
known results available from the literature and new results.

Chapter 4 contains the results of investigations of the fracture processes (paths of
crack propagation) for bodies under the conditions of rolling (rolling with sliding)
contact. These results were obtained by using the model proposed in Chap. 2, the
solutions of SIE for the corresponding problems, and also the results of evaluation
of lifetime under the conditions of contact fatigue. We study and describe the
specific features of formation of the typical defects usually observed in rolling
bodies, such as pitting, spalling, squat (“dark spot”), checks, crumbling depending
on the operating parameters of the analyzed rolling pair and the characteristics of
cyclic crack growth resistance of the corresponding materials. In particular, we
present a theoretical confirmation of the well-known Wei hypothesis that the main
cause of pitting formation is the presence of oil in the contact zone (edge cracks
wedged out by pressure of any kind propagate toward the contact surface and lead
to its pitting). We also show under what conditions (operating conditions and the
characteristics of crack growth resistance) a subsurface crack may lead to the
formation of the following defects: spalling, gaps, very long subsurface cracks that
do not appear on the rolling surface, and spontaneous fracture of elements caused
by the crack propagation into the bulk of the material.

Preface vii
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We present examples of evaluation of the residual contact lifetime of rail, wheel,
and roll steels according to the criteria of pitting and spalling formation. The contact
fatigue curves (i.e., the dependences of the number Nf of rolling cycles on the
maximum value of contact pressure p0) are plotted by using the criteria of pitting or
spalling formation on the rolling surfaces. We also give some recommendations
useful for engineering practice.

Chapter 5 deals with the investigation of contact interaction of two bodies under
the conditions of fretting fatigue. We study the fracture processes in the material
(and construct the paths of crack propagation) in the zone of cyclic contact of two
bodies under the conditions of fretting fatigue, in particular, depending on the
friction coefficient and stick/slip conditions between the bodies, the form of the base
of counterbody (the type of modeling contact loading), etc. We also present some
examples of evaluation of the residual service life for turbine blades of the GTE
(gas turbine engine) made of titanium alloy.

In addition, Chaps. 4 and 5 contain a large body of data on the dependences
of the SIF range in a contact cycle DKII(b) on the angle of orientation b of the edge
crack for the operating parameters of the wheel–rail system. Note that the parameter
DKII(b) controls the process of crack propagation by the mechanism of transverse
shear (mode II) in the contact zone. We also establish the existence of a charac-
teristic angle b = b* for the propagation of shear edge cracks and formulate the
conditions required for its determination. It is shown that cracks initiated at this
angle are both independent contact fatigue defects and form a base for the initiation
of typical contact fatigue defects, such as checks, squats, pitting, etc. Similar
conditions are also proposed for the evaluation of the angle that forms a “fretting
tongue” in the elements of fretting pair.

On the basis of the accumulated results, we make the necessary conclusions and
give some practical recommendations.

Lviv, Ukraine Oleksandra Datsyshyn
Volodymyr Panasyuk
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Chapter 1
Contact Lifetime Estimation Methods
for Tribojoint Elements. A Survey

Abstract In this chapter, we give a survey of the available literature dealing with the
methods aimed at the evaluation of the contact lifetime of elements of the rolling and
fretting couples. We analyze the results of investigations in the scientific directions
that can be regarded as basic for the proposedmethods, namely, in the fatigue fracture
mechanics and in the theory of contact problems of themathematical theory of cracks.
We also consider the applications of the contact fatigue approaches to the problems
of the contact lifetime evaluation of the tribojoint elements.

1.1 Fatigue Fracture Mechanics

The phenomenon of fracture of structural element after a certain number of repeated
loads much lower than a single fracture load was first called fatigue by J.V. Poncelet
in his book “Introduction to IndustrialMechanics” (1837–1839) [205, 206]. In partic-
ular, this phenomenon manifests itself in the decrease in the lifetime of steel articles
under repeated variable loads. Clearly, in the course of industrial development, it
was necessary to guarantee the required serviceability of products and prevent their
premature sudden failures and, hence, the accidents caused by these failures. The
indicated period of time was characterized by the rapid development of rail trans-
port, which was accompanied by the breaks of rails, wheels, and axles under the
influence of variable loads. Therefore, for almost the entire nineteenth century, the
investigations of the phenomenon of fatigue of metals (at that time, carbon steels)
were concentrated on the problems of railway transport [206]. At the end of the 19th
century and the beginning of the 20th century, the predominant role in the stimulation
of the investigations of fatigue of materials was played by the automobile industry.
Somewhat later, since the 1920s, the leading role passed to the aircraft construction.
The approaches used at that time in the science on strength, fatigue and fracture of
materials are now called classical [149].

The classical approaches are based on the assumption that an element of a
deformed solid subjected to loading can be either in the continuous state or in
the destroyed state. Moreover, the transition of the material (body) from the con-
tinuous to destroyed state, i.e., the fracture process occurs instantaneously when the

© Springer Nature Switzerland AG 2020
O. Datsyshyn and V. Panasyuk, Structural Integrity Assessment of Engineering
Components Under Cyclic Contact, Structural Integrity 9,
https://doi.org/10.1007/978-3-030-23069-2_1
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2 1 Contact Lifetime Estimation Methods for Tribojoint Elements …

characteristics of the stress-strain state reach a certain critical value typical of a given
material. If the characteristics of stress-strain state in the material do not reach their
critical values, the fracture processes do not occur and the body preserves its integrity
(strength). The classical ideas concerning the fracture processes were used to estab-
lish the corresponding characteristics of strength of structural materials and develop
the methods for their determination. They were extensively used in the engineering
practice and formed the basis of the well-known phenomenological hypotheses on
strength [78, 168]. However, the classical approaches do not explain the mechanism
of fracture itself, do not reveal the factor accelerating or decelerating this process,
and do not enable one to formulate the principles of control over the mechanical
characteristics of materials and, in particular, their fracture strength. Hence, it was
necessary to develop new approaches.

The main idea of the nonclassical approaches is connected with the introduc-
tion of a certain intermediate state of the analyzed material between its continuous
and destroyed states [149], which should be taken into account in the evaluation of
its determining its strength and durability, especially in the presence of crack-like
defects. As an important feature of the regions of strained material characterized by
the formation of its intermediate state (process zones), we can mention the fact that,
in these zones, the material is always deformed beyond the limits of elasticity and,
just in these zones, we observe the most intense realization of the local plastic yield,
interaction with the ambient medium, diffusion processes, and other phenomena
preceding the local fracture.

The analysis of intermediate states within the framework of continuum mechan-
ics led to the creation of new concepts and computational models. These concepts
and models formed a basis of the new branch of science of strength, namely, of
the mechanics of quasibrittle fracture of materials. The investigations in this direc-
tion were originated in the 1920–1930s in the works by A.A. Griffith, J.N. Taylor,
E.O. Orowan, and somewhat later by Irwin [71, 82, 83, 97] (see also the bibliography
in [149]).

The results of investigations in the mechanics of fatigue fracture (according to the
nonclassical approaches) are presented in the generalizing papers and monographs
by O.E. Andreikiv, V.S. Ivanova, A.Ya. Krasovs’kyi, N.A. Makhutov, H.M. Nyky-
forchyn, I.A. Oding, O.P. Ostash, V.V. Panasyuk, H.S. Pysarenko, V.I. Pokhmurs’kyi,
O.M. Romaniv, M.M. Stadnyk, S.V. Serensen, V.F. Terent’ev, V.T. Troshchenko,
G.P. Cherepanov, S.Ya. Yarema, A. Carpinteri, S. Kocianda, K. Miller, P. Paris,
J. Rice, R. Ricci, D. Taylor, T. Yokobori and other researchers [12, 23, 26, 99, 149,
150, 171, 174, 203, 207].

One of the most important results of investigation of the fatigue fracture of struc-
tural materials is the development of standard testing methods, the representation of
results of these tests in the form of fatigue fracture diagrams (FFD), and the deter-
mination of the characteristics of cyclic crack growth resistance of materials [6, 148,
170]. The specific features of these tests and the history of investigations of this
problem were discussed in [148, 174] and in the works by Yarema [216–218] for
the case of fracture realized according by the mode I (normal opening) mechanism.
The analysis of the case where the fracture process at the crack tip (along its front) is
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realized according to the mechanism of longitudinal shear was also quite successful
and gave results in the form of methodical recommendations for testing (see, e.g.,
[100]). However, up to now, there are no proper standard testing methods in the case
of transverse shear at the crack tip, i.e., in the case of shear realized perpendicularly
to the crack front. In this case, only separate procedures are available [19, 137].
Thus, the available literature contains fairly rich data on the characteristics of cyclic
crack resistance of materials in normal opening and in the case of longitudinal shear.
At the same time, the results of investigation of transverse shear are quite poor. The
current state of the problem of evaluation of the characteristics of cyclic crack growth
resistance in transverse shear and the description of the corresponding FFD can be
found in the survey [122].

Among the indicated investigations, we can also mention the works devoted to
the nearthreshold sections of the fatigue fracture diagrams of materials in the tran-
sition between the stage of macrocrack initiation and the stage of its propagation.
Theseworks deal with the determination of the threshold values of the stress intensity
factors (SIF) Kth or their ranges �Kth below which the crack does not grow in the
analyzed material. As for its importance and physical nature, the threshold value of
the SIF is compared [148, 174] with the endurance limit, which is one of the main
characteristics specifying the resistance of structural materials to fatigue fracture
within the framework of the classical approaches. On the one hand, this character-
istic of cyclic crack growth resistance of the material is especially important for the
estimation of the lifetime of structural elements and, on the other hand, it is very
sensitive to the structure of the material, possible closure of the crack faces at the
crack tip, ambient temperature, frequency of loading, etc. The determination of the
threshold values of the SIF requires both the investigation of growth of the macro-
crack and the analysis of the stages of formation of so-called “short cracks” and
their initiation because “there is no distinct boundary between the stages” [55, 148,
174, 217]. “The duration of the period of macrocrack initiation varies within broad
limits. According to different estimates, it constitutes 20–90% of the total lifetime
depending on thematerial, sizes and shape of the body (and, in particular, on the pres-
ence of stress concentrators), the character of loading, the properties of the medium,
and other operating conditions, as well as on the accepted criteria of separation
into periods” ([174], Sect. 4). A significant contribution to these complex investi-
gations was made by O.E. Andreikiv, V.S. Ivanova, Ya.L. Ivanyts’kyi, H.M. Nyky-
forchyn, O.P. Ostash, V.V. Panasyuk, O.M. Romaniv, V.T. Troshchenko, S. Shtayura,
S.Ya. Yarema,M.W. Brown, K.J. Miller, Y.Murakami, J.R. Rice, R.O. Ricci, D. Tay-
lor and other researchers (see the bibliography in [148, 149, 171, 174, 203]).

The analytic description of fatigue fracture diagrams was an important achieve-
ment in the mechanics of fatigue fracture of solids. A formula for the description
of these diagrams was first proposed by Paris [163, 164]. Later, it was somewhat
modified by Yarema [174]. Cherepanov [26], Andreikiv [5], Yarema and Myky-
tyshyn [219] and other researchers proposed the relations for the description of the
complete FFD. These formulas can be found in [150, 174].
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1.2 Methods of Mathematical Theory of Cracks

The information about the stress-strain state or the stress intensity factors in
bodies with cracks is used as basic for modeling the process of propagation
of the cracks in the course of cyclic contact of the bodies. There are numer-
ous publications devoted to the solution of the main problems of the the-
ory of elasticity for cracked bodies (in which a deformed body is subjected
to the action of a system of forces or displacements). These are, in particu-
lar, the monographs by O.E. Andreikiv, L.T. Berezhnyts’kyi, H.S. Vasyl’chenko,
O.P. Datsyshyn, L.V. Ershov, A.O. Kamins’kyi, L.M. Kachanov, H.S. Kit,
P.F. Koshelev, A.M. Lin’kov, N.A. Makhutov, E.M. Morozov, G.P. Nikishkov,
V.V. Panasyuk, P. Paris, V.Z. Parton, M.P. Savruk, J. Sih, L.I. Slepyan, M.M. Stad-
nyk, M.P. Stashchuk, V.M. Finkel’, M.V. Khai, G.P. Cherepanov, M.H. Ali-
abadi, T.L. Anderson, A.J. Carlson, E.E. Gdoutos, B.M. Lowengrab, A. Neimitz,
D.P. Rooke, I.N. Sneddon, J. Williams, H.R. Wu and others. The data on the stress
intensity factors near the crack tips were systematized in the handbooks by Savruk
[180], Aliabadi [2], Murakami [134], Rooke and Cartwright [175], Sih [190], Tada
et al. [200]. In all these works, the authors mainly analyzed the cases of rectilinear
cracks whose faces are not in contact.

The problemsof the theory of elasticity for cracked bodieswere solved bydifferent
methods. The surveys of these methods can be found in the works [150, 165, 180,
200].

In the case of two-dimensional problems for bodies with cracks, the methods of
finite elements [132, 188], boundary elements [126], Green functions [214], and sin-
gular integral equations [161, 181, 184] are proved to bemost efficient and, hence, are
usedmost extensively. At the same time, themethods of conformal images, boundary
collocations, bulk forces, asymptotic methods, etc. are now used less commonly.

Note that, in the two-dimensional problems of the theory of elasticity, the
researchers often apply various representations of the general solution in the form of
certain functions of complex variable (complex potentials). In this case, the so-called
Kolosov–Muskhelishvili representations are used especially extensively [112, 139].
If we express the Kolosov–Muskhelishvili complex potentials in the form of Cauchy-
type integrals of the unknown derivatives of discontinuities of displacements along
the crack contours, then, as shown in [31, 32, 160–162, 182, 183], the problems
posed for systems of arbitrarily located rectilinear cracks in infinite and semiinfi-
nite planes, bands, and domains bounded by circles can be reduced to systems of
singular integral equations (SIE), which can be efficiently solved (numerically) by
the methods of mechanical quadratures. In the monographs by Savruk [181, 184],
basic problems of the two-dimensional theory of elasticity for simply connected and
multiply connected bodies weakened by curvilinear cracks were reduced to SIE.
Similarly, basic problems of the theory of elasticity for a half-plane weakened by a
system of curvilinear cracks [29, 30, 96, 209] and the contact problems of action of
a rigid punch upon the half-plane with curvilinear cracks [155, 157, 185] were also
reduced to systems of SIE. In the present work, we extend the method of SIE to some
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new contact problems for a half-plane with cracks and use it for the construction of
the paths of crack propagation in the zone of cyclic contact between two bodies.

The contact problems in the case where the faces of rectilinear cracks are closed
under the action of a system of loads in an infinite elastic plane were solved in [84,
95, 204], in the case of a crack located along a circular arc, they where solved in
[85, 145], and, in the case of a crack in the form of broken line, in [221]. A more
detailed survey of these investigations can be found in [110, 181]. In the major part
of the cited works, the problem of partial contact or contact along the entire crack
length was studied by using different methods with regard for the friction between
the crack faces. Savruk extended the method of SIE to plane problems for bodies
with curvilinear cracks whose faces are under the conditions of smooth contact or
sticking [181] and illustrated this approach by numerical results obtained for the
SIF at the crack tips along a circular arc, parabola, or semiellipse. At present, the
problem of construction of the solution of the problem for curvilinear cracks under
the general conditions of contact of the crack faces (sliding with friction, sticking,
and opening displacement) remains urgent. For the problems of cyclic contact, it is
important to take into account the history of loading. An attempt to formulate and
solve contact problems with the history of loading was made in [3, 4].

1.3 Model Schemes of Contact Interactions. Contact
of Crack Faces

As a rule, complex stressed states are formed in the elements of friction couples.
Its determination with regard for the presence of cracks is connected with serious
mathematical difficulties. Therefore, in the construction of computational models,
it is customary to use certain simplifications. Thus, within the framework of two-
dimensional models, damaged bodies are modeled by elastic half-planes weakened
by cracks and the influence of the counterbody is replaced by the action of normal
p(x) and tangential q(x) forces distributed in a certain way along the boundary of
half-plane. These forces describe the shapes and sizes of the counterbody, the type of
contact interaction, the mechanical characteristics of materials and contact surfaces,
etc. In the case of contact interaction and rolling or rolling with sliding, the most
widespread model loads are concentrated forces and elliptic (Hertzian) distributions
of contact pressure p(x). The tangential forces q(x) are, as a rule, connected with
the normal forces p(x) by the Amonton–Coulomb law via the coefficient of contact
friction f, which enables us to construct a fairly adequate model of the conditions
of sliding between the bodies. In the case of contact interaction of fretting fatigue,
the role of model loading is played not only by the elliptic distribution of contact
pressure but also by the uniform distribution and, under conditions of sticking, by
the Cattaneo–Mindlin distribution [24, 101].
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Among the configurations of domains used to model the problems of contact
interaction, the model of a half-plane with arbitrarily located edge or subsurface
cracks is used especially extensively.

The engineering practice and the results of experimental investigations demon-
strate [19, 64, 103, 131, 137, 223] that, under the conditions of cyclic contact, the
initial macrocracks in the zone of compression propagate almost rectilinearly. In the
literature, there are numerous publications devoted to the solution of two-dimensional
problems of the theory of elasticity for a half-plane weakened by a single rectilinear
crack or a system of cracks of this kind. Their detailed survey and solutions can be
found in [110, 161, 181]. We also note also that various brief versions of these results
are presented in the handbooks [2, 134, 175, 180, 190, 200]. However, these cases
mainly deal with the loads under which the crack faces are not in contact. In fact, in
the contact cycles (displacements or changes in the model contact load), the crack
faces usually come in contact, which changes during the cycle and this requires the
solution of complex contact problems.

Consider two-dimensional problems for a half-plane weakened by a rectilinear
subsurface (inside) crack. For the case where a concentrated force moves along the
boundary of the half-plane, the SIF was found in the works [25, 73, 88, 113, 114,
146, 186, 187, 196, etc.] depending on the location of the load. At the same time,
in the case where the Hertzian pressure plays the role of contact loading, the SIF
was determined in [7, 25, 86, 109, 121, 178, etc.]. It should be emphasized that
Sheppard et al. [25, 186, 187] reduced the posed problems to systems of singular
integral equations in the real form (which has a cumbersome structure) and solved
these systems numerically. In this way, the values of the SIF K II and �K II were
established and the approximate maps of contact of the crack faces were constructed
in [186, 187]. Similar results were obtained by Komvopoulos and Cho [113, 114] by
the finite-element method. The analysis of these results and the survey of the cited
works can be found in [67, 128]. In recent publications [38, 60], the SIF K II and
�K II for the subsurface crack in a contact cycle were found by the method of SIE in
the complex form with regard for the slip–stick conditions between the faces.

There are much more works devoted to the investigation of inclined rectilinear
edge cracks in the half-plane as compared with the case of subsurface cracks. Thus,
in particular, in the case of action of concentrated forces on the boundary of the
half-plane with edge crack perpendicular to the boundary; Rooke and Jones [176]
obtained an approximate analytic solution. Numerous authors use this solution as
the Green function in problems with more complicated loads. The cases of Hertzian
distributions of contact pressure with the corresponding tangential component for
cracks inclined to the boundary (as a rule at a certain angle typical of the given
rolling couple) under different contact conditions of the crack faces were considered
in [1, 9, 16–18, 21, 47, 50, 51, 58, 63, 65, 76, 77, 108, 109, 120, 142, 173, 215, 221,
etc.] (see also the surveys [51, 76, 77]).

Thus, Keer and Bryant [108] solved the problem in which the faces of an edge
crack contact without friction (conditions of smooth contact) or with an insignificant
friction over the entire crack length. By using the dislocation approach (the disloca-
tions are regarded as jumps of displacements along the crack contour), they reduced
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the original problem to a system of two real singular integral equations. The contact
problems for the conditions of partial smooth contact of the faces of an inclined
edge crack subjected to the action of a Hertzian load moving along the edge of the
half-plane were solved in [47, 50, 51, 123, 124]. These problems were reduced to
complex SIE. The values of the SIF and the boundaries of the contact sections of the
faces were established.

The most extensive investigations were devoted to the solution of the problems
dealing with the case where the crack faces are in contact with friction over the entire
crack length. Different methods were used for this purpose and the finite-element
method was applied especially extensively [17, 18, 173]. Note that the methods of
bulk forces [142], boundary elements [1], weight functions [9, 74], and SIE [38,
58, 59, 63] were also used in this case. The maximal values of the SIF K II and
their range �K II in a cycle of displacements of the contact load established in these
investigations were also used to estimate the contact life of the elements of some
rolling couples.

We now mention an important work by Bower [21] in which, for the same set of
parameters (orientation and length of the crack, the value of the friction coefficient in
contact between the bodies and the crack faces), the values of the SIFwere determined
and the maps of contact between the crack faces were constructed with regard for
the following conditions of contact of the faces: restraint (sticking), sliding with
friction, and opening displacement of the faces. As in [108], the method of SIE in the
real form was used in the cited work. An approximate solution by the finite-element
method with an attempt to take into account the sticking of crack faces was obtained
in [215]. More complete investigations of the SIF K II and �K II in a single contact
cycle under the conditions of sliding and sticking of the crack faces were carried out
in [39, 52, 53], in particular in [49, 54] the nearsurface compression residual stresses
were taken into account.

Finally, we also mention that the survey and analysis of similar results obtained
in the other publications is presented in [51, 52].

All mentioned works were devoted to the analysis of the influence of various
in-service factors on the variations of the SIF in the course of motion of the contact
load along the edge of the half-plane, namely, friction between the rolling bodies and
crack faces, crack length and orientation, size of the section of contact between the
rolling bodies, and pressure of oil or different working media in the crack.

Note that the solutions obtained by Keer and Bryant [109], Bower [21], and Shep-
pard et al. [186, 187] are used as reference solutions up to now. In theworks published
later, the solutions were mainly obtained by the methods of finite or boundary ele-
ments. The results available from the literature are not always in good agreement.
The accuracy of these solutions is important for the proper choice of configuration of
the initial geometric-force scheme (half-plane–crack–load) used for the construction
of the paths of crack propagation.

We now also mention the works [104, 136] in which the SIF and the kinetics of
contact of the faces of plane crack (inside or edge; circular or elliptic) in a half-space
under the action of amovingHertzian load (cylinder or sphere) were studied in detail.
These results were obtained by Y. Murakami, M. Kaneta, H. Yatsuzuka et al. by the
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method of bulk forces. They are important for the comparison with the data obtained
by analyzing two-dimensional problems.

The progress attained in the mechanics of fatigue fracture and in the mathematical
theory of cracks formed a basis for the investigation of the fracture of deformed solids
in the case of their cyclic contact.

1.4 Contact Interactions in Tribojoints. Phenomenological
Models

An assumption that the fatigue processes running in the course of rolling, fretting
fatigue, friction fatigue, and impulsive contact have common symptoms and regu-
larities was made already in [101, 111, 167]. Thus, in particular, the experimental
data about these contact interactions are presented in the monograph [167] and some
theoretical results in this field can be found in [101]. At present, this concept is
extensively developed.

The well-known publication by Way “Pitting due to rolling contact” [213] can be
regarded as the first work devoted to the study of the nature of pitting. In the cited
work, the investigations were carried out on bearings and disksmade of bearing steel.
The work by Lundberg and Palmgren [127] concerning the phenomenon of spalling
and contact fatigue durability of the bearings is also worth mentioning.

In the 1950–70s,Kostetskii [115] performedprecision experimental investigations
of contact fatigue and wear via the formation of varioliform pitting and spalling on
rolling bearings. The results of studies of the formation of contact fatigue defects in
the case of fretting fatigue contact interaction were generalized byWaterhouse in his
monograph “Fretting-corrosion” [212]. The surveys of investigations carried out in
this field in the 1960–80s were presented in [111, 193–195].

In the 1970–90s, the number of publications dealing with the problems of contact
fatigue rapidly increased. The investigations were performed in different directions
adapted to the analysis of specific tribojoints.

The investigations of the contact strength and durability of elements of wheel-rail
systems are performed especially extensively. Thus, in particular, we can mention a
series of large survey papers [22, 68, 98, 125, 147, 191, 224].Noticeable contributions
to these investigations were made by R. Allen, P. Anderson, J. Beynon, M.W. Brown,
P.E. Bold, P. Clayton, G. Donzella,M.F. Frolish, D.I. Fletcher,M.Kaneta, A. Kapoor,
A. Mazzu, Y. Murakami, M. Sato, K. Savley, X. Su, W.R. Tyfour and many other
researchers (see [11, 13, 27, 75, 102, 179, 189, 198, 211]). A large body of investi-
gations of the problems of crack propagation and contact endurance of the rolls of
rolling mills and roll steels was carried out in [79, 106, 130, 140, 143, 144, 169, 201,
222]. The results obtained for the bodies of rolling bearings and bearing steels were
presented in [14, 107, 118, 127, 137, 202, 213]. For the elements of gearings and the
corresponding steels, see [8, 70, 80, 94, 115, 137].
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On the basis of the accumulated experience, the corresponding standards were
formulated in [19, 64, 79, 137, 211, etc.]. According to these requirements, the basic
investigations of contact fatigue of the elements of rolling couples were performed
mainly on double-disk machines with diameters more than 40 mm and thicknesses
over 10 mm made of identical or different materials under the following conditions:
dry friction, moisture (water) or working oil in the contact zone under various contact
loads. The researchers studied the processes of crack initiation and growth in the
nearsurface zone of rolling bodies and their lifetime, i.e., the number of rolling
cycles up to the appearance (recording) of crumbling particle(s) in the contact zone.
Note that the study of crack growth shows that, after initiation in the nearsurface
contact zone, the cracks propagate by the shear mechanism almost rectilinearly (in
their planes) for a certain (quite long) period of time and then pass to the mechanism
of normal opening. A large body of experimental data on the specific features of
fracture (formation of defects), contact lifetime of the main types of rolling couples
(wheel-rail, rolls of rolling mills, and gearings), and the characteristics of cyclic
crack growth resistance of materials was obtained by the Japanese (Y. Murakami,
M. Kaneta, M. Ishida, G. Yatsuzuki, et al.) and English (K. Johnson, K. Miller,
D.I. Fletcher, M.W. Brown, J. Beynon, M.F. Frolish, A. Kapoor, R.A. Smith, et al.)
researchers.

It was clear that the necessity of systematization and formulation of the criteria
of contact fatigue of the structural materials of tribojoints, as well as the general-
ization of the accumulated experimental data required the creation of the theoretical
foundations of the mechanics of fatigue contact fracture.

In the 1970–90s, the first theoretical models were formulated in the mechanics
of fatigue contact fracture including, in particular, the cases of fretting fatigue [91,
176, 208] and rolling [21, 105, 108]. These models and the models proposed later
[16, 18, 69, 79, 81, 119, 137, 138, 172, 173] were based on the concepts of fatigue
fracture mechanics, solutions of the contact problems of the theory of elasticity for
cracked bodies, and the evaluation of the determining operating parameters (residual
stresses, medium, distributions of contact forces and friction between the contacting
bodies, loading frequency, and temperature) for various types of tribojoints. As the
criteria of local fracture, it is customary to use the force or energy criteria of fracture
mechanics.

The last years are characterized by the appearance of numerous new investiga-
tions and results, especially for the elements of wheel-rail systems. These results are
described in detail in the surveys [66, 67, 76, 129, 197, 223]. We also mention new
results on the process of crack propagation under the conditions of fretting fatigue
contact interaction [10, 87, 92, 166] presented at the Sixth and Seventh International
Symposia on Fretting Fatigue (ISFF6, 2010; ISFF7, 2013). The methods of standard
testing for the lifetime of elements of the fretting couples were also developed [141].
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1.5 Pitting and Spalling

Themechanismsof formation of themostwidespread contact fatigue defects, namely,
pitting and spalling, were proposed by the researchers on the basis of the outlined
models and the results of new experimental investigations.

Thus, somemechanisms of formation of varioliform pitting in rolling bodies were
described in [21, 103, 108, 137]. Indeed, in [108], it was assumed that, in the case
of unidirectional rolling, the pits form, as a rule, due to the action of contact forces
between the bodies. In other words, as a result of action of the cyclic shear stresses
in the contact zone, the initial edge cracks propagate by the mechanism of transverse
shear mainly rectilinearly with subsequent possible bending of their paths under the
influence of tensile stresses and crack propagation by the opening mechanism. The
role of liquid (oil) in the contact zone is mainly connected with the decrease in the
level of friction between the crack faces. At the same time, the possibility of action
of the oil pressure onto the crack faces does not lead to the crack growth toward
the surface of the rolling body with subsequent crumbling. In [21, 103, 137], it was
assumed that macrocracks can be initiated on the surfaces of both driven and driving
bodies of the rolling couple, whereas pitting occurs solely on the surface of the
driven body in the presence of liquid and in the case where a shear crack is inclined
at an acute angle to the rolling surface in the direction of motion of the counterbody.
Under these conditions, liquids penetrate into the crack. As in [108], we now assume
that the initial macrocrack first propagates almost rectilinearly by the mechanism of
transverse shear. The length of this shear macrocrack can be quite large [137] and
comparable with the size (length) of the contact zone. Later, under the pressure of
oil upon the crack faces, the mechanism of crack propagation transforms into the
normal opening mechanism and the crack turns toward the surface, which leads to
its crumbling.

Note that the authors of the works cited above restricted themselves solely to the
analysis only the stress intensity factors and the angles of initial deviation θ∗

0 [149,
161] for rectilinear (or plane) edge cracks. On the basis on these data, they predict
the path of second (curvilinear) stage of crack growth leading (or not leading to the
crumbling of the surfaces of rolling bodies. These data were also used in [19, 21,
103] to estimate the lifetime of the nearsurface layers of rolling bodies. However, the
indicated predictions of the shapes and sizes of defects and the lifetime of the body
are not properly substantiated and can be erroneous.

Some models of spalling formation under the conditions of contact rolling fatigue
basedon the large bodyof engineering data and the results of laboratory investigations
were presented in [79, 106, 140, 143, 144, 201]. In these works, it is assumed that the
cracks of contact rolling fatigue are initiated both on and under the surface. However,
in the absence of noticeable subsurface defects, there is no common opinion about
the causes of crack initiation and the mechanisms of its propagation. Thus, in [140],
it was assumed that subsurface cracks are initiated at the points of maximal shear
stresses. At the same time, in [201], it was assumed that microcracks can be initiated
in the lower part of the quenched working layer. On the contrary, in [106, 143],
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the authors made a conclusion that, in practice, the major part of failures caused by
spalling occur as a result of crack initiation on the surface caused by the in-service
incidents and inhomogeneous contact pressures, thermal shocks, etc.

In [79, 106, 137, 144], the authors made an attempt to explain the propagation
of nearsurface cracks along a circle for great distances parallel to the surface of the
backup roll or their penetration into the bulk of the material. In particular, a model
of fracture mechanics for the contact rolling fatigue was proposed in [79] in order
to understand the mechanisms of fracture caused by spalling of the rolls. The aim
of the present work is to give a quantitative representation of the stress intensity
factors K I and K II at the tips of surface cracks inclined to the contact surface and
compare these quantities with the threshold values of the characteristics of cyclic
crack-growth resistance K Ith and K IIth in the investigated materials. The model is
formulated in terms of the crack length and the directions of its growth and enables
one to predict the contact rolling fatigue of backup rolls.

1.6 Nearsurface Cracks Growth Paths. Estimation
of Contact Lifetime

Under the conditions of cyclic contact of bodies and complex stressed state in the
contact zone, the cracks propagate along curvilinear paths. In this case, either a
single crack (or a system of cracks) grows and forms different types of defects of the
surface layer of the elements of tribojoints: varioliform and V-like pitting, spalling,
cracking, checks, darkening and settling of the surface caused by the subsurface crack
branching, i.e., squats, cavities, etc. To estimate the lifetime of contacting bodies, it
is necessary to construct the paths of propagation of nearsurface cracks specifying
the shapes and sizes of contact-fatigue defects. The number of cycles prior to their
formation determines the contact fatigue lifetime of the body (element of the joint).
It is also very important to establish the ranges of operating parameters and the
characteristics of crack growth resistance of the material that may lead to the crack
growth into the bulk of the material and create a hazard of failure for the product
(article). The indicated fracture processes in contacting bodies are the contemporary
subjects of inquiry in the field of fracture mechanics and require the development of
adequate computational models. The presented analysis of the available publications
demonstrates that this (main) aspect of the problem of estimation of the contact
lifetime of tribojoints has not been properly investigated yet.

In [70, 72, 220], a groupofSlovenian researchers (J. Flašker,G. Fajdiga, S.Glodež,
B. Zafosnyak, Z. Ren, et al.) developed a theoretical-and-experimental methodol-
ogy for the construction of the paths of propagating curvilinear cracks, which form
microscopic pits in elements of the gearings under the action of contact loads and oil
pressure upon the crack faces. The path is constructed step-by-step from the spline
of rectilinear segments by using the finite-element method and the criterion of max-
imum rate of energy release. In a similar way, but by the method of SIE, Goshima



www.manaraa.com

12 1 Contact Lifetime Estimation Methods for Tribojoint Elements …

[81] constructed the paths of formation of the pits for the nearsurface zone of the
bearing materials. However, in the analyzed cases, the friction between the crack
faces is almost not taken into account. At the same time, it strongly affects both the
angle of initial orientation of the edge crack and the contact lifetime of elements of
the rolling couple. The characteristics of cyclic crack growth resistance of materials
in shear are also not taken into account. In the cited works, the authors obtained some
contradictory results; in particular, that the pits may be formed without wedging of
the crack faces (without pressure of oil upon the crack faces).

A new approach to the solution of this problem was proposed by Datsyshyn et al.
[28, 37, 56–58, 60, 153, 158]. Within the framework of the fracture mechanics of
materials, Datsyshyn [34–37, 60] formulated a computational model for the investi-
gation of fracture processes and prediction of the residual lifetime of solids (elements
of tribojoints) under the conditions of cyclic contact. This model is based on the step-
by-step evaluation of the paths of crack propagation by using the solutions of singular
integral equations of the two-dimensional contact problems of the theory of elasticity
for bodies with curvilinear cracks and the criteria of local fracture in the complex
stressed state with regard for the characteristics of the cyclic crack growth resistance
of materials in shear and normal opening and the operating parameters of tribojoints.
The algorithms used for the construction of the paths of crack growth in the contact
zone take into account the variations of the stress-strain state caused both by crack
elongation and by the motion of counterbody (variable loading) in a contact cycle, as
well as possible changes in the mechanism fracture (from transverse shear to normal
opening) in the course of crack propagation and friction between the crack faces. In
the present work, within the framework of this model, we suggest a procedure for
the estimation of the residual lifetime of rolling and fretting couples according to the
formation of contact fatigue defects.

As a specific feature of this model, we can mention the separation of the stages
of crack growth in the contact zone by the mode II and mode I mechanisms. In the
present work, we briefly describe the results of our preliminary investigations of the
curvilinear paths of propagation of initially rectilinear nearsurface cracks of fixed
length, which develop according to the mode I mechanism and form typical contact
fatigue defects, such as pitting [28, 45, 48, 57, 61, 158], spalling [42–44], squat
[154, 156], checks, cracking [46] in rolling bodies, and the growth of edge cracks
in elements of fretting couples under the conditions of sliding or sliding/sticking
between them [33, 36, 37, 40, 41, 60, 62, 151, 159]. In our monograph, we also
present recent results on the growth of edge and subsurface cracks by the mode I
and mode II mechanisms and, as a synthesis of both approaches (stages), model the
process of formation of typical contact fatigue defects: pitting [38, 58, 60, 63, 152,
153] and spalling [38, 60, 152, 200]. Finally, we give examples of evaluation of the
residual lifetime in both stages according to the criteria of formation of these defects.
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1.7 Contact Fatigue and Wear

It is necessary to emphasize the following fact: The processes of formation of contact
fatigue defects in the course of cyclic contact of solids are closely connected with the
processes of wear. According toGOST 27674–88, wear is a process of fracture of the
material with separation of its fragments (wear particles) from the surface and (or)
the accumulation of residual strains in the course of friction, which manifests itself
in the gradual changes in the sizes and/or shape of the analyzed body. At present,
it is customary to distinguish [89, 117, 133] the following main types of wear:
mechanical, fatigue, abrasive, hydroabrasive, electro- and hydro-erosive, cavitation,
oxidation, stress corrosion,wear caused by sticking, andwear in the course of fretting.
For almost all types of wear, an important role is played by the mechanical influence
on the surface as a result of which small (comparative with roughness) or somewhat
larger fragments of the material (wear particles) separate from its surface. In the
opinion ofChichinadze,Kragel’skii,Morozov andHolmberg [89, 93, 117, 133], in all
cases connectedwith the processes of formation and separation ofmaterial fragments
(fracture processes), it is possible to use the approaches of fracture mechanics. It
is worth noting that, according to the sizes of wear particles, it is customary to
distinguish [93] the processes ofmicrowear (10−6 m…10−4 m) andmacrowear (10−4

m…10−2 m). The works [20, 74, 90, 93, 115–117, 120, 135, 177, 210] are devoted to
the experimental and theoretical investigations inwhich the process ofwear is studied
from the viewpoint of crack initiation and propagation on the micro- or macrolevels.
In [111, 116–118, 133, 193, 199], one can find the surveys of the models of wear
based on the application of the approaches of fracture mechanics to the problem of
wear. Theseworks aremainly based on the introduction of the characteristics of crack
growth resistance of the materials in the relations for the rate and intensity of wear
and the reliability of elements of the tribojoints. Note that, for the last three decades
(since 1985), the direction of investigations on the boundary of tribology and fatigue
fracture mechanics is called tribofatics [15, 192]. Thus, the results described in the
present monograph can be regarded as investigations of macrowear processes with
a contribution to tribofatics.
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Chapter 2
Calculation Model for Estimation
of Cyclic Contact Lifetime of Body
with Cracks

Abstract This chapter contains the key elements of the theory of fatigue fracture,
namely, the main stages and fatigue characteristics of the materials; the criteria
and diagrams of fatigue fracture, and the characteristics of fatigue crack growth
resistance of the materials. We present a brief description of the specific features
of cyclic contact interaction accompanied by the crack initiation in the nearsurface
contact zone: rolling, rolling with sliding, fretting fatigue, pulsed contact, friction
fatigue, etc. We also describe typical contact fatigue defects formed by cracks on the
working surfaces of the tribojoint elements. In the same chapter, we propose a new
computational model for the investigation of the fracture processes and evaluate the
contact residual service life of the bodies (tribojoint elements) under the conditions
of their cyclic interaction.

2.1 Classical and Nonclassical Approaches

To characterize the common features of the problems of formation of new hypotheses
and approaches in the theory of strength and fracture of materials, we consider some
initial concepts of the classical and nonclassical (new) approaches in this field of
science.

Within the framework of the classical understanding of a material as a solid body,
i.e., as a continuum, we assume that an element of the deformed (under the action of
loads) body can be in one of the following states [83]: continuous (C) or fractured
(F). In this case, the transition of thematerial from the C-state into the F-state, i.e., the
fracture process (Fig. 2.1a), runs instantaneously if the characteristics of the stress-
strain state (computed according to the accepted rheological model. e.g., the model
of elastic continuum) attain certain critical values of these characteristics for the
given material (e.g., the maximum tensile stresses attain their ultimate value σu). If
the characteristics of the stress-strain state in the material do not attain their ultimate
values, then the fracture (C → F transition) does not occur and the body preserves
its integrity and, hence, strength.

© Springer Nature Switzerland AG 2020
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Fig. 2.1 Schemes of fracture: a classical scheme; b, c nonclassical schemes

The classical understanding of fracture processes resulted in the creation of appro-
priate experimental procedures aimed at the determination of quantitative fracture-
resistance characteristics of the material, including the methods of determination of
the limiting value of strength of the material σu, yield strength σT, relative elongation
δ (or εmax), relative reduction of area ψ of the specimen, endurance limit σR [40, 99],
and other characteristics of specimens of the material (these are characteristics of
macrovolumes, i.e., volumesmuch larger than the structural element of the material).
The classical concept of fracture in the evaluation of strength (fracture) of structural
materials is extensively used in the engineering practice and became basic for the
well-known phenomenological hypotheses of strength (I, II, III, IV, etc.) [99].

In this approach to the evaluation of the strength ofmaterial, the problem is reduced
to the construction (on the basis of the available theoretical and experimental data)
of a function

Fc(J1, J2, J3,C1,C2,C3, . . .) = 0, (2.1)

where J1, J2, and J3 are invariants of the stress (strain) tensor [99] (sometimes simply
the principal stresses (strains) at a given point of the deformed body) and C1, C2,
C3,… are experimentally determined constants for the given material. This function
is used as a criterion for the evaluation of the strength of material in the structure.

The classical approach of the mechanics of materials does not reveal the fracture
mechanism itself. By using this approach, it is impossible to describe the fracture
process and establish the factors accelerating or inhibiting this process, i.e., to formu-
late the principles of control over the mechanical properties of material (its fracture
resistance). Moreover, within the framework of the classical approaches, it is impos-
sible to explain the contradiction between the perfect and engineering strength of
crystals; from the practical viewpoint, within the framework of these approaches, it
is impossible to perform the engineering diagnostics of fracture or the absence of
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fracture of the material in the structure under the extreme conditions of its operation
(e.g., to determine the influence of sharp stress concentrators, i.e., cracks). Finally,
the analysis of experimental data shows that the scheme of instantaneous fracture of
bodies over the entire cross section is in fact unrealistic.

The main idea of the nonclassical approaches (i.e., the approaches of contempo-
rary fracture mechanics of materials and structures) can be described as follows (see
Fig. 2.1b): The transition of an element of the deformed material from the C-state
into the F-state is accompanied by a certain intermediate (I) state of the material. As
the most important feature of the regions of deformed material characterized by the
formation of I-states (process zones), we can mention the fact that, in these regions,
the material is always deformed beyond the limit of elasticity and, moreover, they are
characterized by the most intense processes of local plastic yield, interaction with
the ambient medium, diffusion, and other phenomena responsible, as a final result,
for the local fracture of the material, i.e., for the C → I → F transition.

In other words, the nonclassical scheme of fracture takes into account the I-states
of the deformed material in the evaluation of its strength and durability. Most often,
these states are formed near pointed stress concentrators, i.e., cracklike defects (see
Fig. 2.1c).

In the engineering practice, the following types of fracture of structural materials
are encountered most frequently: plastic, brittle, fatigue, dynamic, etc.

Plastic fracture occurs after strong plastic deformation in the entire (or almost in
the entire) volume of the body. As a version of plastic fracture, we can mention is
the rupture of a specimen after 100% reduction of the neck area in tension, which
occurs as a result of the loss of ability of the material to resist plastic deformation.

Brittle fracture occurs as a result of propagation of the main crack caused by
(macroscopically insignificant) plastic deformation concentrated in the vicinity of
the crack tip. In the case of perfectly brittle fracture, plastic deformation is absent
and, hence, after fracture, it is possible to compose the body of the previous size
from its fragments obtained in the process of fracture without gaps between them.
Sometimes, in similar cases, the researchers use the term “elastic fracture”.

In the case of quasielastic (or quasibrittle) fracture, there exists a plastic zone
head of the crack front and a plastically deformed (strain-hardened) material near
the crack surface. The remaining (much larger) part of the volume of the body is in
the elastic state. The fracture process in which the stresses acting in the net cross
section are higher than the yield strength but lower than the ultimate strength of the
material is also called quasibrittle fracture.

Fatigue fracture occurs under the conditions of cyclic (repeated) loading of a body
as a result of accumulation of irreversible defects, which lead to the initiation and
propagation of the crack. The fatigue fracture is macroscopically brittle but near the
fracture surface, the material is always plastically deformed (strain-hardened).

We also distinguish high-cycle and low-cycle types of fatigue. The high-cycle
fatigue (or simply fatigue) is characterized by the nominal stresses lower than the
yield strength (whose repeated generation in the deformed body causes its macro-
scopic deformation in the elastic region) and by a large number of cycles to failure.



www.manaraa.com

28 2 Calculation Model for Estimation of Cyclic Contact Lifetime …

The low-cycle fatigue (or repeated static loading) is characterized by the nominal
stresses higher than the yield strength (in each loading cyclewith this level of stresses,
the body suffers macroscopic plastic deformation) and by an insignificant number
of cycles to failure.

The general aim of investigations in the fracture mechanics of solids (materials)
is to develop the theory of the processes of deformation and fracture with regard for
their structural imperfection. In this case, it is very important to establish physically
justified criteria for the evaluation of strength (absence of fracture) of the struc-
tural material with regard for the presence of cracklike defects and find the ways of
formation of materials and structures with high strength and durability.

As themost important concept of the fracturemechanics of solids, we canmention
the fact that fracture is treated as the process of crack initiation and propagation. As
compared with the classical approaches, this concept describes the mechanism of
fracture and the crack is regarded as an object responsible for fracture.

Thus, the nonclassical scheme of fracture takes into account the I-states formed
near the defectswith sharp ends (first of all, cracklike defects) in deformedbodies, i.e.,
stress concentrators whose radius of rounding is comparable with the characteristic
linear size of the structural elements of thematerial. Thus, in the evaluation of strength
of a body, it is necessary to take into account its local physicomechanical properties,
e.g., the ability to resist crack propagation, i.e., its crack growth resistance. The
analysis of the I-states of the material within the framework of continuummechanics
requires the introduction of new (nonclassical) computational models and concepts.
Since the main characteristics responsible for the behavior of the material at the
crack tip are stresses, strains, and energy, all available criteria of fracture mechanics,
as in the classical theories of strength, are split into energy, force, and deformation
criteria.

2.2 Force Approach in Fracture Mechanics. Linear
Fracture Mechanics

Despite the fact that the energy approach proposed byGriffith in [45] was historically
the first criterion of fracture mechanics, the force approaches based on the concept
of stress intensity factors introduced by in Irwin [50] became especially popular in
the engineering practice. The description of fracture performed on this basis is quite
simple and clear. The application of characteristics that can be difficultly found,
such as true surface energy and the work of local plastic strains appearing in the
other approaches and criteria, is also excluded. The successive realization of the
force approach led to the development of a fairly rigorous complete theory of linear
fracture mechanics, which served as a good basis for the analysis of brittle fracture
of materials and engineering structures.

Stressed state in the vicinity of the crack contour. The starting point in the strength
analyses of the structural components and structures with cracks is the investigation
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Fig. 2.2 Local coordinate systems near the crack tip

Fig. 2.3 Schemes of the principal macromechanisms of cracks propagation: (I) normal opening
(mode I) mechanism; (II) transverse shear (mode II) mechanism; (III) longitudinal shear (mode III)
mechanism

of the distributions of stresses and strains formed in these structures and components
under the action of applied loads. In this case, it is of especial interest to analyze the
zone in the immediate vicinity of the crack tip (end) because the next stage of fracture
begins just in this zone and the material passes into the I-state (see Fig. 2.1). Within
the framework of linear fracture mechanics based on the model of perfectly elastic
body and representing the crack in the form of a cut of thickness zero whose surfaces
are free of loads, the analyzed problem is reduced to a boundary-value problem of
the theory of elasticity.

In the general case, the strain distribution in the vicinity of a random point O
(Fig. 2.2) of the crack contour can be represented in the form of the superposition
of three specific types of deformation (Fig. 2.3) corresponding to three main kinds
of displacements of the crack surfaces: normal opening (mode I), transverse shear
(mode II), and longitudinal shear (mode III).

The first type of deformation is connected with the normal displacements of the
crack surfaces in the opposite directions (symmetrically about the planes xy and xz),
the second type corresponds to the displacements in which the crack surfaces slip
over each other in the direction perpendicular to the crack front (z-axis), and the third
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type is connected with the slip of one crack surface of over the other parallel to the
crack front (z-axis).

In the realization of each indicated type of deformation of the body weakened by
a crack in the vicinity of its contour, the distributions of stresses and strains can be
represented in the form [50, 84]:

in the case of normal opening (I)

ux = KI
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; (2.2)

in the case of transverse shear (II)
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; (2.3)

in the case of longitudinal shear (III)

ux = 0, vy = 0, uz = KIII
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2
, σxx = σyy = σzz = τxy = 0.

(2.4)
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The stress intensity factors K I, K II and K III serve as a measure of singularity of
stresses near the crack tip, i.e., near the process zone (I-state) and play the same role
for this region as the stress concentration factors in the resistance of materials to
nonsharp concentrators in the body. Unlike the concentration factors, stress intensity
factors are measured in kg/mm3/2 or MPa

√
m.

The universality of relations (2.2)–(2.4) is based on the fact that, according to
these relations, the radial (along the radius r; Fig. 2.2) and angular (in the direction
of changes in the angle θ; Fig. 2.2) asymptotic distributions of the stressed state do
not depend on the crack length, shape of the body, and the applied loading modes.
The intensity of this distribution is determined solely by the factors K I, K II and K III,
which are functions of the applied loads, geometries of the body and cracks, which
are independent of the coordinates of a point near the end of the cut. If σ is a parameter
that characterizes the external load upon the body and l is the characteristic linear size
of the crack, then it is clear that K I = K I(σ, l), K II = K II(σ, l), and K III = K III(σ, l).

Thus, the stress intensity factors are the main (basic) characteristics of the stress-
strain state of a material in the vicinity of a crack and, therefore, are of very high
importance in fracture mechanics. At present, the determination of these quanti-
ties for bodies with cracks of different configurations on the basis of the solution
of the corresponding boundary-value problems is a large independent field of the
mathematical theory of cracks (see Chap. 3).

Force criteria of brittle and quasibrittle fracture. Since for a perfectly elastic body,
the stress-strain state near the tip (front) of a crack of size l caused by an external
load σ is completely determined by the stress intensity factors K I, K II and K III, these
quantities are used as basic in the force criteria of the linear fracture mechanics.
In this case, the criterial equation contains the parameters K I, K II, K III and some
material constants Ci, i.e., can be represented in the form

F
(
K ∗

I , K
∗
II, K

∗
III,Ci

) = 0, i = 1, 2, 3, . . . ;
K ∗

j = K j (σk, l), j = I, II, III, (2.5)

where σk is a critical (fracture) value of the applied load. Relation (2.5) describes, on
the coordinates (K I, K II, K III), a certain ultimate surface for a given material upon
attainment of which, the crack passes from the stable state into the unstable state
(i.e., begins to propagate).

The presence of a zone of plastic deformation near the crack tip in metals leads
to the discrepancy between the actual picture of the stress-strain state and the stress-
strain state predicted by relations obtained from the solution of the problem posed
for elastic bodies. However, if the zone of nonlinear properties of the material is
fairly small, then the asymptotic behavior of solutions of the problems for elastic
bodies can be regarded as a good approximation to the actual stress distribution. This
enables us to believe that the size of the process zone, i.e., the I-state of the material,
is also completely determined by the stress intensity factors. This is why, despite the
fact that the actual materials do not exhibit a perfectly elastic behavior at fracture,
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the criteria of linear fracture mechanics remain true for these materials if the plastic
yield is limited (i.e., in the case of realization of the scheme of quasibrittle fracture).

A criterion of type (2.5) was first proposed by Irwin [50] for the case of fracture
of quasibrittle bodies by the normal opening mechanism. It can be formulated as
follows: a crack begins to propagate in the case where the stress intensity factor
attains it critical value for a given material:

in the case of plane deformation

K ∗
I = KIC , (2.6)

in the plane stressed state

K ∗
I = KC

By analogy with the Irwin criterion, the condition of start crack in the case of
transverse shear (K I = K III = 0) is represented in the form

K ∗
II = KIIC (2.7)

and, for the longitudinal shear (K I = K II = 0), in the form

K ∗
III = KIIIC . (2.8)

The principal difference between the quantities on the left- and right-hand sides of
relations (2.6)–(2.8) is that K ∗

I , K
∗
II and K ∗

III reflect the geometric shape of the body
weakened by a crack and the conditions of its loading, whereas K IC , K IIC and K IIIC

are the characteristics of the material related, just as the yield and ultimate strength,
a specific property of the material, i.e., the ability to resist crack propagation (i.e.,
the crack growth resistance). At present, the crack growth resistance of structural
materials is determined by using special methods and recommendations [44, 52, 64]
specifying the conditions of evaluation and application of these parameters.

For the complex loading of a body (σ1 �= 0, σ2 �= 0, σ3 �= 0) in which different
mechanisms of fracture are realized simultaneously, the functional dependence (2.5)
has a more complicated form. Thus, the criterial relation [83, 84]

(
K ∗

I

KIC

)m1

+
(

K ∗
II

KIIC

)m2

+
(

K ∗
III

KIIIC

)m3

= 1, (2.9)

where m1, m2 and m3 are material constants, frequently gives a good description of
fracture for a broad class of structural materials under the conditions of complex
loading of a body with crack, i.e., in the case where K ∗

I �= 0, K ∗
II �= 0, and K ∗

III �= 0.
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2.3 Fatigue Fracture. Classical Approach

The fracture processes in materials subjected to long-term loading by forces of con-
stant or variable (as functions of time) intensities (fatigue fracture of materials) are
characterized by the fact that they occur under stresses always lower than the ultimate
strength of the material. According to the contemporary ideas, the fatigue fracture
of materials (solids) is physically caused by the presence of structural microinho-
mogeneities. In the process of deformation of the body, this leads to the overloading
of some zones of the material and, as a result, to the appearance of microplastic
shears in its structure and the formation of various types of microdefects. An event
of insignificant one-time plastic deformation does not cause noticeable changes in
the structure of the material. At the same time, the long-term action of the load and
multiply repeated microplastic deformations result in the accumulation of microde-
fects and the formation of microcracks in materials. For a certain density of these
microdefects, they start to coalesce, which leads to the initiation of microcracks cov-
ering several structural elements of the material. This corresponds to the onset of the
stage of propagation of macrocracks formed in the material.

The problem of fatigue resistance of the materials is one of the most urgent
problems in the science of strength of deformable solids.

Main stages and characteristics of materials fatigue. Numerous experimental
investigations of the behavior of microstructure of the material in the process of
fatigue fracture demonstrate [51, 58, 59, 113] that microplastic shears in the near-
surface layers of the deformed body are formed in the early stages of the process
and develop in a certain sequence. Depending on the character of changes caused by
cyclic plastic deformation, there are three successive (partially overlapping) stages
of fatigue fracture of the material [40, 99], namely: (i) the incubation stage charac-
terized by the inhomogeneous concentration of microplastic shears, mainly in the
nearsurface layers of the deformed body due to the lower yield strength of these
layers of the material [101]; (ii) the stage of initiation of submicrocracks, their prop-
agation, coalescence, and formation of microcracks, i.e., violations of the material
structure on the level of its blocks, grains, and inclusions, and the formation of extru-
sion and intrusion steps in the surface layer [107]; (iii) the stage of crack propagation;
this stage originates when one microcrack becomes predominant and turns into the
macrocrack. Some researchers also distinguish the fourth stage, namely, the stage
of final fracture. Since the crack growth rate in the process of final fracture is very
high, the duration of this stage is quite small. In this connection, its investigation is
not of high practical importance and, therefore, this process is often not considered.
Sometimes, the researchers considermore detailed partitions of the process of fatigue
fracture of materials but this does not introduce noticeable modifications in the main
stages of fatigue fracture of materials.

In the fracturemechanics ofmaterials, the following twoperiods of fatigue fracture
are mainly distinguished: the period of initiation of macrocracks N1 combining two
initial stages of fatigue fracture, and the period of propagation of the macrocrack N2,
which includes both the period of crack growth to critical sizes and the stage of final
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fracture. Thus, the lifetime (N) of deformed bodies is determined by the following
formula:

N = N1 + N2. (2.10)

The principal difference between these periods can be described as follows. The
first period is characterized by the multiple initiation of microcracks in the subsur-
face layers of the deformed material, determined by the structural properties of the
material. The development of these microcracks is mainly controlled by tangential
stresses and local properties of the structural elements. In the second period, the
fracture process runs near the tip of the macrocrack under the conditions of self-
similarity in the plane of action of the maximum tensile stresses. The process of
crack propagation depends on the crack growth resistance of the material under the
given conditions.

The duration of the period of crack initiation varies within fairly broad ranges.
According to different estimates, it constitutes 20…90% of the total lifetime [109,
133]. However, these estimates cannot be regarded as well justified because the
accurate definition of the time of initiation of the macrocrack has not been given up
to now.

In the engineering practice, the curves obtained as a result of testing of smooth
specimens are used especially extensively as the characteristics of fatigue resistance
of the materials [122, 123]. These are the dependences of the range of acting stresses
�σ or strains�ε (or their maximumvalues σmax and ε max in a cycle) on the number of
cyclesN to failure within the ranges of possible variations of the indicated quantities.
The scale of N on the abscissa axis is, as a rule, logarithmic, while the scale on the
ordinate axis may be either logarithmic or uniform. The stress that corresponds to the
horizontal asymptote of the fatigue curve is called the fatigue limit of the material
(Fig. 2.4).

The nature of the mechanisms of fatigue fracture depending on the level of acting
stresses is analyzed according to the presence of inflections in the fatigue curve, the
slopes of individual segments to theON-axis, and the other specific features [51, 122].
The most characteristic segments of the curves are selected, namely, the quasistatic
fracture (cyclic creep) (I), low-cycle fatigue (II, III), and high-cycle fatigue (IV,

Fig. 2.4 Fatigue diagram of
the metal
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V). We can also observe the transition zones between these segments. For different
materials and loading conditions, the duration of the period of quasistatic fracture
may vary from tens to thousands of cycles. The low-cycle region ranges varies from
N ≈ 5×102 to Nm ≈ 104 cycles. The region of high-cycle fatigue also has two
segments and corresponds to lifetimes N > Nm cycles.

The presence of an almost horizontal segment V in the curve corresponds to the
physical fatigue limit of the material. On a test base of 108 cycles, it was discovered
in many pure metals with FCC, BCC, and HCP crystal lattices for specimens tested
in inert media. At the same time, for numerous metals with FCC lattices, the physical
fatigue limit was not found even on a test base of about 109–1011 cycles. The physical
fatigue limit is usually called the fatigue limit. At the same time, in the case where
it is absent, the short-time fatigue strength, i.e., the level of stresses σ ∗

R on a given
test base N*, is used a characteristic of the material. If the fatigue of metals occurs
in certain working media, the properties of the media introduce additional changes
to the structure of the fatigue diagram of the metal.1

2.4 Cyclic Contact Interactions. Contact Fatigue

Among various joints of the elements of units of machines, buildings, and structures
used in the engineering practice, there are two groups of joints (moving and fixed)
[32]. The moving joints are, as a rule, characterized by the realization of contact
interactions of rolling, rolling with slip, and sliding. The typical features of these
joints are the cyclic character of contact processes, large relative displacements of
contacting bodies, and low friction between them (rolling bearings, serrated joints
(gearings), rolls of rolling mills, wheel-rail system, etc.). As a result of interactions
of this kind, the processes of contact rolling fatigue [96, 116, 128] or friction fatigue
[118] run in nearsurface zones of the bodies (elements of the joints).

In the engineering practice, fixed joints are often subjected to the in-service vibra-
tion or variable cyclic loads as a result of which, elements of the joints and their sur-
faces compressed by a normal forceP are also subjected to the action of an additional
force oscillating between the limiting values ±F* and acting, in the general case, at
an angle α to the normal of the contact surface (Fig. 2.5). In this case, the maximum
and minimum values of the normal oscillating force are given by the formula P* =
P ± F*cos α, while for the maximum and minimum values of the tangential force,
we can write Q* = ± F*sin α [54]. If α = 90°, then we get the conditions of the
process of fretting fatigue (fretting wear or fretting corrosion in the cases where the
processes of wear or chemical reactions are predominant, respectively) [11, 117,
130]. For α = 0° (0 ≤ α < 90°), we get the conditions of contact interaction, which
is called impulsive contact [11, 96, 116] when even periodic separation of the bodies

1V. V. Panasyuk, “H. V. Karpenko and the development of physicochemical mechanics of structural
materials,” in: Lviv Scientific School on the Problems of Mechanics of Materials and Materials
Science [in Ukrainian], Spolom, Lviv (2015).
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Fig. 2.5 Annular slip and fretting zones in the case of contact of a steel ball with a plane surface
formed under the action of oscillating forces applied at an angle to the contact surface [54]

is possible. However, all cases are characterized by the cyclic character of contact,
small relative displacements, high friction, and a typical shape of the contact zone
(spot) (Fig. 2.5b–e). In the course of impulsive contact, we also observe the fatigue
processes similar to the process of fretting fatigue [11, 54, 96, 116].

We now briefly consider the specific features of the process of fatigue of the
material the under conditions of cyclic contact of solids (elements of tribojoints).
According to the definition proposed by Pinegin [96], the phenomenon of contact
fatigue of materials is understood as the process of preparation and development of
fracture in the surface layers of the material subjected to long-term variable contact
loads. In this case, the maximum variable loads do not cause any noticeable losses
in the elastic properties of the material even in the most stressed volumes near and
in the zone of force contact of the surfaces.

The stressed state of the material under contact loads is characterized by high
gradients of stresses and their localization in small volumes of the material near the
surface. This explains the characteristic features of the process of contact fatigue of
thematerial. Thus, the degree and character of deformation of thematerial undergoes
abrupt changes as the distance from the surface increases. In the upper surface layer,
especially at the tops of macroasperities, we observe high levels of plastic strains.
At the same time, even at depths that are only several times greater than the sizes of
the contact zone, the stresses become as low as several tenths or hundredths of the
limit of elasticity of the material.

Moreover, the presence of two dangerous zones, namely, the upper surface layer
(in view of the stress concentration on the surfaces of irregularities) and the zone
of maximal tangential stresses at a critical depth, which is lower than the sizes of
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the contact region. For high tangential forces in the contact region, these areas can
merge into a single zone.

The phenomenon of contact fatigue fracture manifests itself in the form of fatigue
cracks responsible (in the process of their development) for the separation of some
volumes (particles) of the metal, which violates the process of subsequent operation
of the machines. The fatigue fracture of the working surfaces differs from corrosion
fracture, abrasive wear of the bodies, plastic changes in the shape (wrinkling) of
the surface, and ultralocal fatigue fracture in the upper surface layer but fairly often
interacts with these types of fracture and, as a result, accelerates. In the course of
development of the theory of contact stresses and experimental investigations of the
contact strength of materials, the ideas concerning the typical sites of initiation of the
initial fatigue cracks (which is of great importance) changed many times. Depending
on the location of initial fatigue cracks, the methods used for the numerical analyses
of the components can be refined (with the corresponding increase in the reliability
of machines). Moreover, the technology of treatment of the components can also be
improved, thus guaranteeing an increase in the quality of machines and the efficiency
of their manufacturing.

The analysis of the available experimental data shows that the typical sites of
formation of the fatigue cracks can be determined if we consider the specific elements
of tribojoints and stable values of the operating parameters. Otherwise, it is difficult
to establish the required regularities because the appearance of cracks as a result of
contact interaction of solids depends on a great number of factors: first of all, on
the type of contact interaction, i.e., the conditions of contact loading, the shape of
contacting bodies, the state of their surface layers, the presence of lubricants, residual
stresses, thermal modes, defects of the material, etc.

2.5 Typical Contact Fatigue Damages

In the case of rolling of two cylinders with parallel axes over each other, the process
of cracking is determined by the contact conditions [39, 96, 97, 116, 125].

During pure rolling (the friction coefficient is 0.005 ≤ f ≤ 0.025), the cracks are
mainly formed in the subsurface zone [32, 61, 62, 67]. In the process of growth, they
appear on the surface. This process of formation of these cracks is associated with
the action of maximum tangential stresses τmax at a depth h ≈ (0.7…0.8)a, where a
is the half length of the contact section.

During rolling with slip (0.025 ≤ f ≤ 0.4), the metal is damaged both on the
surface and at a depth (Figs. 2.6, 2.7, 2.8, 2.9, 2.10 and 2.11). Although the value of
τmax in the subsurface layer can be higher than the stresses acting on the surface, the
surface fracture is also intensified by thermal and oxidation processes, and by the
influence of lubricants and other working media.

In the tests for rolling contact fatigue, two characteristic types of surface damages,
namely, pitting and spalling are observed. Pitting is, in fact, crumbling of some
surface areas (Fig. 2.6), which is sometimes accompanied by the cleavages of large
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Fig. 2.6 Characteristic
morphology of a gear joint
teeth surfaces under contact
rolling fatigue [46]:
a individual pits on the teeth
surfaces; b typical V-shaped
pit with an opening angle of
100°

Fig. 2.7 Micrographs of
surface layers cross sections
of the rolling bearings
elements [61]: a formation
and growth of a subsurface
crack; b cross sections of a
pit formed after spalling;
500×

Fig. 2.8 Gap in a railroad
wheel [73]
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Fig. 2.9 Spalling on the
running surfaces of a drill bit
support (large roll and ball)
[139]

fragments of the metal. The sizes of crumbling pits (and their number) increase with
the number of loading cycles and the size of the contact portion. The formation of
pits is possible if a system of inclined surface cracks is developed preliminarily and,
moreover, lubricants, water, etc., are present in the rolling bodies contact zone (see
Chap. 4). Spalling manifests itself in the form of separation of thin plates of the
embrittled metal. Such damage is possible if a subsurface crack parallel to the plane
of rolling at a depth comparable with the size of the contact portion is initiated.
The growth of this crack results in its appearance on the surface or crossing with an
edge crack (Fig. 2.7). Sometimes, the subsurface crack in the rolling body appears
at a greater depth. However, for some values of operating parameters (see Chap. 4),
the crack appears on the rolling surface and forms a gap (Fig. 2.8). The so-called
“encircling” spallings are well known in the engineering practice (Fig. 2.9) [77, 139].
The causes and mechanisms of their formation are now extensively discussed in the
literature.

In recent years, engineers and scientists studying the processes of contact rolling
fatigue and the problems of rails lifetime focus their attention on two more types
of contact fatigue damages: squats (“dark spots”) [9, 138] (Fig. 2.10) and checks
[25, 137] (Figs. 2.11, 2.12). These types of defects prove to be dangerous by the
possibility to evolve into catastrophic transverse cracks.

Finally, it can be stated that a large amount of experimental data on the damages
caused by contact fatigue under rolling and slipping are presented in the monographs
by Kostets’kyi [60–63].

In the case of pure slipping (friction fatigue), tensile strains play a decisive role in
the fracture of surface layers [118]: strain εx is formed behind a cylindrical indenter
in the direction of its motion, while strain εy arises ahead the indenter in the direction
perpendicular to its motion. As a result of the repeated alternating deformation of
the surface layer in two mutually perpendicular directions, the initiation of fatigue
cracks, namely, surface cracks (perpendicular to the direction of the indenter motion)
under the influence of the amplitude values of the tensile deformations εx and parallel
to the surface under the influence of the amplitude values of the tensile deformations
εy is observed. The development of three-dimensional system of cracks in the result
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Fig. 2.10 Different stages
a–c of the “dark spot”
growth in the running
surface of a rail

of friction fatigue is completed by spalling of a certain volume of the material or
transversal crack (Fig. 2.13).

Several characteristic concentric zones with clear boundaries are formed on the
contact surface under pulsing contact, (Figs. 2.5e, 2.14) [97]. These are:

Zone I is the central sticking zone with the maximal uniform compression. Here
the initial properties of surface layers undergo insignificant changes. Under certain
test conditions, even traces of mechanical treatment are reserved on the surface; in
the other cases, the insignificant “peeling” of the surface is observed.
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Fig. 2.11 Checks in the rail
head are groups of surface
cracks formed on the gauge
corner of the rail with
distances of 0.5–7.0 mm
between them [138]

Fig. 2.12 Longitudinal
section of a damage (checks)
caused by contact rolling
fatigue in standard carbon
steel [79]

Fig. 2.13 Crack in the brake
shoe of a car

Fig. 2.14 Contact area after
long-term pulsating loading
[97]
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Fig. 2.15 Cracks caused by
fretting fatigue on the
surface of rope wire [130]

Zone II is the boundary of the sticking zone. It is characterized by the relatively
deep fracture of the surface, for which corrosion-mechanical fatigue is regarded as
the main cause. This zone becomes especially dangerous under slipping. Here the
initial fracture has a discrete (point) character.

Zone III is a slipping zone. Depending on test conditions, different types of inter-
action (molecular or mechanical) and different types of surfaces fracture caused by
seizure, abrasive wear, oxidation wear, and fretting corrosion may be observed.

Zone IV is the boundary of the contact region. This is the zone of maximum radial
tensile stresses. In combination with compressive stresses (tangential to the contact
contour), these stresses create conditions of pure shear. This promotes the initiation
of fatigue cracks.

Zone V is the zone of fracture products removal by oil. This zone located beyond
the boundaries of the contact zone.

Thorough investigations of materials fracture under pulsating contact loads were
carried out by Pinegin et al. [98], Kennedy [57], Johnson [54], Burton and Russel [8],
Tyler et al. [127] and Dawson [30], who studied the surfaces fracture under cyclic
compression of steel components.

Comparing the photographs in Figs. 2.5d, e, 2.14, other numerous experimental
data [3, 4, 130], and the results of their analysis, it is possible to conclude that the
information presented above on the contact “spot” remains true for fretting fatigue.
As the main result of this are fatigue cracks (Fig. 2.15). Moreover, on the contact-
ing bodies surfaces, the formation of V-shaped pits and saucer-shaped cavities (see
Chap. 5), strongly decreases the fatigue resistance of the components [1, 115, 130].
Note that a large amount of experimental data on fretting fatigue can be found in the
monographs by Waterhause [130] and Balatskii [3, 4].

Evaluation of lifetime. During calculation of the machine parts lifetime, it is
customary to use (see, e.g., [32, 96]) the endurance fatigue limit (σ–1)]), i.e., the
stress (stresses) under which the material can withstand a large number of loading
cycles without fracture. In the plots of lifetime in σ–N or log σ–log N coordinates
(Fig. 2.16), this corresponds to the point of turning the N(σ) dependence curve into
a straight line parallel to the N-axis. On N(σ) curve a point of transition from section
of low-cycle fatigue 1 to section of restricted endurance limit 2 conform to σ1th

threshold stress of surface elastic fracture [75] or to σ d
yld limit of dynamic fluidity of

materials [109].
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Fig. 2.16 Fatigue curve: (1)
section of low-cycle fatigue;
(2) section of restricted
endurance limit; (3) section
of endurance limit

For numerous materials, including certain plastics, alloys, and steels quenched for
high hardness, the endurance fatigue limit does not exist, and the fatigue curvemono-
tonically approaches the N-axis. Many up-to-date machines operate under severe
conditions and, thus, are designed for a limited service life. Hence, the working ele-
ments of these machines should not be designed for infinitely many loading cycles.
It is reasonable to make themmore compact and stressed but evaluate the guaranteed
number of loading cycles without fracture more accurately. That is why the values
of the temporary (limited) fatigue strength, i.e., the calculated stresses σP = σ–1 lim

are used, what corresponds to one of the points on the curvilinear (or inclined in the
logarithmic coordinates) segment of the fatigue curve (Fig. 2.16).

The lifetime can be also estimated using formulas of empirical type

N = N
(
σp,C1, C2, . . .

)
(2.11)

Formula (2.11) give an analytic description of the fatigue curve whose main
argument is the calculated stress σp and C1, C2, … are the fatigue characteristics
(parameters), including σ−1, of the given material as an element of conjugation,
established experimentally.

In the case of cyclic rolling contact, the calculated stress σp = ϕ(p0) is firstly
established using Hertz-Dynnyk-Belyaev formula (see, e.g., [96]); here, p0 is the
maximum value of the Hertzian pressure in the contact region. Depending on the
contact interaction and the type of conjugation, the role of the stress σp can be played
by the maximum tangential, normal, or equivalent stresses at the place of the highest
probability of crack initiation. As the constants C1, C2,…, parallel with the material
fatigue limit σ−1, it is also possible to use the hardnessH of thematerial in the surface
contact zone.

Later, the experimental curves of contact fatigue were used as a basis for the
evaluation of lifetime under fatigue contact. These curves are plotted for each type
of contact interaction with regard for (or depending on) main service characteristics
of tribojoints and, in particular, the specific features of loading (Fig. 2.17). The
experiments are usually performed for every level of loading (e.g., the value of p0)
up to the crack initiation. For lifetime estimation the fatigue limit (σR) corresponding
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Fig. 2.17 Fretting fatigue [115] (a) and friction fatigue [118] (b) curves depending on contact
load; a endurance of Ck35 V alloy specimens (1) without fretting corrosion; (2), (3), (4), (5), (6)
specific contact load of 5, 10, 20, 50, and 100 MPa, respectively; slipping amplitude A = 0.1 mm;
b endurance of 40X steel specimens with polymeric insert and contact pressures: (1) 0 MPa, (2)
5 MPa, (3) 8.5 MPa

Fig. 2.18 Contact rolling fatigue curves of 9H2MF steel specimens [100] (a): (1) with a zone
hardening break; (2) in the normalized state; comparison of the fatigue curves for rubber (E = 32.5
kgf/cm2) [65] (b) under the conditions of: (1) impulsive contact; (2) friction interaction

the cycle ratio R is introduced into the calculation formula of type (2.11) as the main
characteristics.

In recent years, for the contact fatigue calculation analysis, researchers try to
use special curves plotted for the cases where experiments are carried out up to the
appearance of pitting (Fig. 2.18a) or spalling (Fig. 2.18b) on the contact surface.
Here, it is very important to note that just these defects are proposed to be used [1,
43, 48] as determining factors for the evaluation of the lifetimes of bodies under the
conditions of cyclic contact.
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Fig. 2.19 Typical fatigue
fracture diagram of the
material (solid curve)

2.6 Mechanics of Materials Fatigue Fracture. Fracture
Diagrams

The application of the approaches of fracture mechanics, i.e., of the nonclassical
approaches to the analysis of the fatigue processes in materials in the stage of propa-
gation of macrocracks, led to the creation of an efficient method for the quantitative
description and generalization of the experimentally established regularities. This
approach can be described as follows: The load applied to a body, the geometry of the
body and the sizes ofmacrocrack used to determine the crack growth rate can be char-
acterized by the following parameters: one of the stress intensity factors K I, K II and
K III, which describes the stress and strain fields near the crack tip for each of themain
macromechanisms of crack propagation (see Fig. 2.3) under the well-known restric-
tions [93, 132]. This is why it is generally accepted to represent the experimental
data on the development of fatigue macrocracks in materials in the form of fatigue
fracture diagrams (FFD) of the material, which are also called the diagrams of cyclic
crack growth resistance and show the dependence of the crack growth rate v=�l/�N
(increment �l of crack length for the corresponding number of cycles �N) on the
range (difference between the maximum and minimum values) of the SIF in a cycle
�K = Kmax − Kmin or on its maximum value Kmax [109, 134]. The complete FFD
on the lg v, lg �K (or lg Kmax) logarithmic coordinates are S-shaped curves whose
length along the abscissa axis is limited by two vertical asymptotes �K = �Kth (or
Kmax = Kth) on the left and �K = �Kfc (or Kmax = Kfc) on the right (Fig. 2.19),
where �Kth (Kth) is the threshold value of the range (or the maximum value) of the
SIF belowwhich the crack does not grow;�Kfc (Kfc) is the critical value of the range
of the SIF (or Kmax) above which the crack loses its stability and begins to propagate
spontaneously.

In the kinetic FFD, there are three important sections, which, as follows
from microfractographic and microstructural investigations, correspond to different
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mechanisms of crack growth. The first curvilinear segment (I) of low crack growth
rates (v < v1–2) corresponds to�K close to the threshold values�Kth (see Fig. 2.19).
Despite a significant practical interest, this segment is poorly studied, although 90%
of the durability of structures belongs to this range of crack growth rates. In this stage,
the crack grows nonuniformly and the jumps of increase of the crack length alternate
with crack stops. It is natural that, in the first segment of the diagram, we present
certain averaged values of the crack growth rate from the range v = 10−11–10−9

m/cycle. The second segment (II) of the FFD (v1–2 ≤ v ≤ v2–3) is rectilinear; it is
called the Paris segment. Paris together with his colleagues showed (for the first
time) in [95] that the intensity of the stress field near the crack tip characterized by
the factor KI must determine the crack growth rate and then proposed (in [94]) the
well-known formula v = C(�K)p for the description of the rectilinear segment of
the kinetic fatigue diagram. Here, the constant p is the slope of this straight line and
the constant C specifies its position along the ordinate axis for �K = 1. Later [131],
it was proposed to write this equation in a more convenient form

v = C(�K )n = 10−7(�K
/

�K ∗)n, �K1−2 < �K < �K2−3, (2.12)

where �K* is the value of �K for v = 10−7 m/cycle (see Fig. 2.19) and has the
dimensions of the SIF and a clearer physical meaning unlike the constant C whose
dimensions depend onp. The length of the second segment of the diagramdetermined
by the values of the SIF �K1–2 and �K2–3, and depends on the material and testing
conditions. In most cases, v1–2 lies within the range 10−9–10−8 m/cycle and v2–3 lies
within the range 5×10−7–5×10−6 m/cycle. The third segment (III) of the FFD is the
segment of rapid crack growth (v > v2–3); it is curvilinear, and its slope increases as
�K approaches the critical value of �Kfc. The value of �Kfc, obtained under cyclic
loading can be lower or higher that the values of K IC , K IIC and K IIIC , determined
under static loading. In this segment, the typical process of crack propagation is
jumpwise [109].

For the analytic description of complete FFD (within the range from �Kth to
�Kfc), numerous dependences were proposed in [84, 109]. Thus, in particular, the
following fairly general dependence was proposed by Romaniv et al. in [109]:

v = AK s
Imax

(
Km1

Imax − Km2
th

)m3
/(

Km4
f c − Km4

Imax

)m5

, (2.13)

where A, s and mi (i = 1, 2, 3, 4, 5) are constants for a given material and testing
conditions. A simpler formula

v = v0

(
�K − �Kth

�K f c − �K

)q

, �Kth ≤ �K ≤ K f c, (2.14)

used later (in Chaps. 4 and 5) was proposed by Yarema and Mikitishin [135].
The electron-fractographic analysis of fatigue fractures revealed [82, 103] the

presence of various micromechanisms of crack growth depending on the level of



www.manaraa.com

2.6 Mechanics of Materials Fatigue Fracture. Fracture Diagrams 47

loading. In these fracture surfaces, we see various microscopic features, such as
banded structure, striation, coalescence of pores, and rupture of the bridges between
them (formation of pits), spalling inside and between the grains, etc. The mecha-
nism of striation is mainly typical of the second segment of the diagram [82, 108].
For low values of �K (the first segment of the kinetic diagram), the banded struc-
ture and spalling areas along slip planes (ductile cleavage) are typical microscopic
topographies of the fracture surfaces. In this case, we sometimes observe the process
of growth crack by the cleavage mechanism. However, cleavage inside grains and
between themand the pitmechanismaremore typical of the third segment of the FFD,
where the size of the plastic zone near the crack tip significantly exceeds the struc-
tural parameter of the material (e.g., the grain size) and the micromechanisms typical
of the fracture under loading are realized. In the first and third segments of the dia-
gram, the growth rate of fatigue macrocrack strongly depends on the microstructure
of the material, the parameters of loading cycles, and the ambient medium [103,
108].

In the evaluation of the lifetime of structures, the kinetic fatigue diagrams play the
same role as tensile diagrams in the evaluation of static strength. On the basis of the
FFD, we establish the characteristics of cyclic crack growth resistance of materials
according to which it is possible to choose the materials for various structures and
determine the influence of the operating conditions on the serviceability of materials,
etc. Under certain assumptions, on the basis of these diagrams, it is possible to find
the lifetime of structures weakened by cracks, i.e., the number of cycles to failure as
a result of integration of the equation of crack growth rate

N2 =
lc∫

l0

dl
/
v[�K (l)], (2.15)

where l0 and lc are the initial and critical crack lengths, respectively.
The development of fatigue fracture is a complex process depending on numerous

factors and, therefore, it is important to determine parameters used for its description.
The role of these parameters is, to a large extent, played by the characteristics of cyclic
crack growth resistance of thematerials. The standards required for the determination
of the corresponding characteristics were created in [102]. It is known that, as the
characteristics of cyclic crack growth resistance of materials in the stage of crack
propagation, it is customary to use the threshold value �Kth, the critical value �Kfc,
and the parameters C and p or �K* and p. The values of �K1–2, �K2–3 and �K,
at a certain crack growth rate serve as auxiliary characteristics. In particular, in
most cases, the value of �K for v = 10−10 m/cycle (�K–10

10 ) is chosen in practice
as the threshold value �Kth. At present, there is no generally accepted method for
the evaluation of the critical value �Kfc (cyclic crack growth resistance of the final
fracture). It was proposed [109] to assume that the time of onset of jumpwise crack
growth corresponds to the beginning of unstable development of fatigue fracture.
However, this phenomenon is not typical of many materials. This is why the quantity
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�Kfc is specified as the value of �K for sufficiently high values of fatigue crack
growth rates, e.g., v = 10−5 m/cycle (�K–5

10).
It has been recently established that crack closure is one of the most important

phenomena of the subthreshold growth of fatigue cracks [105]. This phenomenon
can be described as follows: a fatigue crack may closed due to the joining of its faces
at a certain distance from the tip in the tensile part of a loading cycle. In this case,
the stressed state near the crack tip is determined not by the range of the SIF (�K)
but by a certain “efficient” range �Kef = Ktax − K0, where K0 is the minimum
SIF for which the crack opens near its tip. According to Elber [35] who studied
this phenomenon for the first time, it is caused by plastic yield of the material near
the crack tip. However, as follows from the results of performed investigations (see
[109]), the crack closure can be caused by several different processes: the action of
residual compressive stresses caused by variable plastic strains near the crack tip,
the roughness of the fracture surface, the formation of a layer of oxides in the crack
mouth in the process of fretting, the phase transformations in the process zone, etc.
The effect of crack closure can be evaluated [106] by the coefficient k3 determined
from the relation

k3 = (KImax − K0)/(KImax − KImin) = �Kef /�K .

In numerous cases, the diagrams plotted on the basis of effective ranges �Kef =
k3�K (see the dashed curve in Fig. 2.19) within the boundaries of the first and, par-
tially, the second segments appear to be less variable than the conventional diagrams
(v, �K). Sometimes they remain absolutely invariant under changes in the shapes
and sizes of the specimens, asymmetry of the loading cycle, structure of the material,
action of the medium, etc.

Note that, at present, the methods aimed at testing materials for cyclic crack
growth resistance in the presence normal opening (mode I) cracks (see Fig. 2.3) are
well developed and brought to the level of standards [2, 102]. Moreover, there are
numerous efficient procedures of testing for the cyclic crack growth resistance in the
case of longitudinal shear (mode III) cracks (see, e.g., [53]). However, there are only
separate procedures [6, 77] that can be used for transversal shear (mode II) cracks.

2.6.1 Calculation Model for Estimation of Movable
and Immovable Joints Contact Lifetime by Criteria
of Contact Fatigue Damages Formation

In the 1970–90s, the first theoretical models of the mechanics of fatigue contact
fracture, namely, the computational models for the evaluation of the lifetime of ele-
ments of moving and immobile (fixed) joints, were developed. For the case of contact
rolling interaction, various models were proposed by Keer and Bryant [56]; Hearly
and Johnson [47]; Kaneta and Murakami [55]; Sheppard et al. [114], and Bower
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[7]; Glodež et al. [42]. For the case of fretting-fatigue interaction, the computational
models were proposed by Rooke and Jones [110]; Dekhovich and Makhutov [31];
Dubourg and Villechaise [33]; Hills and Nowell [49]; Faanes [36]; Fernando et al.
[38], and Troshchenko and Tsybanev [124]. Somewhat later, it was shown that the
proposed model inaccurately take into account the action of operating factors in tri-
bojoints (residual stresses, lubrication, effect of crack closure, friction between the
crack faces, temperature, etc.). For this reason, new models of contact rolling inter-
action were formulated by T.L. Anderson, J.H. Beynon, S. Bogdanski, A. Ekberg,
M. Endo, G. Faidiga, J. Flašker, D.I. Fletcher, M.F. Frolish, S. Glodež, S. Hamada,
T. Hellen, K. Ichimaru, E. Kabo, M. Kaneta, I.I. Kudish, T. Morita, Y. Murakami,
M. Olzhak, J.W. Rinsberg, C. Sakae, J. Stupnicki, W. Tyfour and other researchers
[5, 34, 37, 41, 69, 76–78, 104, 126]. For the contact fretting fatigue interaction, new
models were proposed by M. Ciavarella, G. Demelio, D. Dini, J. Dominguez, M.-C.
Dubourg, S. Faanes, T.N. Farris, M. Garcia, D.A. Hills, M. Kuno, V. Lamacq,
A. Navarro, D. Nowell, M.P. Sholwinski, C. Vallelanio, R.B. Waterhause and other
researchers [10, 36, 71, 72, 80, 81, 119, 129].

The proposed models are based on the concepts of fatigue fracture mechanics, the
solutions of contact problems of the theory of elasticity for bodies with cracks, and
the analysis of the main operating parameters of various types of contact interaction
in tribojoints. In the major part of these models, the path of crack propagation and
durability are predicted in a simplified way according to the growth of a rectilinear
shear (edge or subsurface) macrocrack in the contact zone and later, when the crack
penetrates into the zone of tension, according to the direction (angle) of its initial
deviation in an elastic half-plane. In a specific case discussed in [37, 42], the authors
evaluate the durability of fear teeth flanks according to the development of micro-
pitting by using a curvilinear path of propagation of an edge crack constructed by
them. Actually, under the conditions of fatigue contact, cracks grow curvilinearly
in the contact zone and realize various types of fracture of the products. Crumbling
often occurs as a result of the evolution of a system of cracks.

In the literature, one can also find the models based on the probabilistic approach
developed by Tallian [120, 121], Kudish [66, 68, 70] and Dang and Maitournam
[12]. However, these models prove to be inefficient for the evaluation of the lifetime
of tribojoints. Note that the Dang Van model based on the use of the elements of
multiaxial fatigue has found fairly extensive applications.

In what follows, we describe a computational model for the investigation of the
propagation of macrocracks and evaluation of the residual lifetime of solids in the
case of their contact interaction. The fracture criteria for thematerial in the process of
growth of fatigue cracks and the algorithms of step-by-step construction of the paths
of crack propagation, developed with the use of singular integral equations of two-
dimensional contact problems of the theory of elasticity for bodies with curvilinear
cracks serve as a basis of the model [15, 16, 25, 26, 88, 91, 92, 111]. The model
takes into account the redistribution of stresses caused by crack propagation and
the variations of loading in a contact cycle. Elements of the model were partially
published earlier, in particular, for the general case of cyclic contact in [18–20, 27,
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Fig. 2.20 General scheme
of the model

Fig. 2.21 Computational
scheme of the model

86, 87], for the rolling fatigue in [13, 21, 24, 26, 29, 89] and for the fretting fatigue
in [16, 21, 22, 90].

Main statements of the model [20]. Consider a problem of cyclic contact inter-
action of two bodies one of which is damaged by cracks. We model this body by
an elastic half-plane weakened by a system of cracks (Fig. 2.20). The second body
(counterbody) is modeled either as a rigid punch (Fig. 2.20) or as a set of normal
p(x, λ, t) and tangential q(x, f, λ, t) forces distributed over the boundary of the half-
plane (Fig. 2.21). These forces depend on the shape and sizes of the counterbody,
mechanical characteristic of the materials and contact surfaces, and the features of
contact interaction in a contact cycle (as functions of time t). As the most extensively
used force schemes of model loading p(x), we can mention a concentrated force,
constant pressure, elliptic (Hertzian) distribution of forces, etc. The friction forces
are taken into account as the tangential forces q(x, f, λ, t). The simplest distribution
of tangential forces is represented by their relationship with normal forces according
to the Amonton-Coulomb law q(x) = fp(x) under the conditions of complete slip
between the bodies, where f is the friction coefficient for these bodies.

As already indicated (Sect. 2.3), in the fatigue fracture mechanics of materials,
the lifetime N of a damaged body is evaluated by analyzing two components: Ni,
i.e., the period (number of loading cycles) prior to the initiation of macrocrack l0,
and Ng, i.e., the period of growth of the macrocrack from the initial length up to the
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critical (admissible) length lc. The period Ng is called the residual lifetime. We now
consider this period.

By analyzing the experimental data [6, 41, 74, 77], we conclude that, in the contact
zone, the (edge and subsurface) macrocracks first rectilinearly develop by the mode
II mechanism and then curvilinearly propagated by the mode I mechanism. Thus,
we can represent the residual lifetime Ng of cyclically contacting bodies with cracks
in the form

Ng = Ngτ + Ngσ , (2.16)

where

Ngτ =
∫ lcτ

l0τ

v−1
(
�Kτ (l), C1τ , . . . , Cmτ

)
dl,

Ngσ =
∫ lcσ

l0σ

v−1
(
�Kσ (l), C1σ , . . . , Cmσ

)
dl. (2.17)

Here, Ngτ and Ngσ are the lifetimes in the stage of macrocrack propagation by
the mode II and mode I mechanisms, respectively; l0τ, l0σ, lcτ and lcσ are the initial
and admissible (critical) lengths of the macrocrack in the stages of shear and normal
opening, respectively, v= dl/dN is the crack growth rate, l is the length of propagating
crack. The parameter of the stress-strain state K(l, λ, t, θ) responsible for fracture at
the crack tip is chosen with regard for the probable fracture mechanism. We choose
the dependences v(�K) according to the experimental data in the form of fatigue
fracture diagrams (FFD) of the material. On the basis of these diagrams, we also
determine the constants C1, …, Ct characterizing the cyclic crack growth resistance
of the material.

Within the framework of linear fracture mechanics, we determine the parameter
K(l, λ, t, θ) via the stress intensity factors (SIF) K I and K II from the relations of the
corresponding criterion of local fracture:

K = K
(
l, λ, t, θ∗) = K̃

[
KI(l, λ, t), KII(l, λ, t) , θ∗(l, λ, t)

] ;
θ∗ = F(l, λ, t) = F̃[KI(l, λ, t), KII(l, λ, t)]; (2.18)

here, θ is a polar angle measured from the tangent to the crack at its tip (see, e.g.,
Figure 2.2) and θ* is the angle at which the parameter K attains its extreme value
(maximum inmodulus) for fixed l,λ and t. Since the stresses and, hence, the quantities
K(l, λ, t, θ*) and θ*(l, λ, t) vary in a contact cycle, it is possible to assume that the
crack grows in a cycle only at the time when the parameter K(l, λ, t, θ*) attains its
extreme value both in the angle θ and in the arguments t and λ (i.e., for the values,
t = t* and λ = λ*). Then the direction of growth of the crack at the point A (Fig. 2.21)
is determined by the angle
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θ∗∗ = θ∗(l, λ, t∗
)

In this case, the range of the parameter �K in a contact cycle must be larger than
the range of the threshold of fatigue growth of the crack in the material �Kth, i.e.,
the following conditions must be satisfied:

max
∣∣K (

l, λ, t, θ∗)∣∣ = ∣∣K (
l, λ∗, t∗, θ∗∗)∣∣; (2.19)

�K = maxK
(
l, λ, t, θ∗∗) − minK

(
l, λ, t, θ∗∗) ≥ �Kth . (2.20)

In the stage of propagation of the macrocrack by the mechanism of shear, the
maximum shear stresses are assumed to be responsible for fracture at the crack tip.
Thus, relations (2.18) for the corresponding criterion take the form [55]:

K = KIIθ
(
l, λ, t, θ∗) = 1

2
cos

θ∗

2

[
KI(l, λ, t) sin θ∗ + KII(l, λ, t)

(
3 cos θ∗ − 1

)];
2KII(l, λ, t)tg3

θ∗

2
− 2KI(l, λ, t) tg2

θ∗

2
− 7KII(l, λ, t) tg

θ∗

2
+ KI(l, λ, t) = 0.

(2.21)

The conditions of crack growth (2.19) and (2.20) are specified as follows:

max
∣∣KIIθ

(
l, λ, t, θ∗)∣∣ = ∣∣KIIθ

(
l, λ∗, t∗, θ∗∗)∣∣; (2.22)

maxKIIθ
(
l, λ, t, θ∗∗) − minKIIθ

(
l, λ, t, θ∗∗) ≥ KIIth. (2.23)

Here, K IIth is the threshold of fatigue growth of the macrocrack under the con-
ditions of transverse shear. Condition (2.23) is also the condition of transition from
the stage of macrocrack initiation to the stage of its growth by the shear mechanism
and can be used for the evaluation of the initial (nucleus) crack length l0τ.

In the second stage of macrocrack propagation by the mode I mechanism, the
maximum tensile hoop stresses are responsible for fracture. In this case, we describe
the parameter K(l, λ, t, θ*) by using the relation of generalized criterion of normal
opening (σθ-criterion) [84]:

K = KIθ
(
l, λ, t, θ∗) = cos3

θ∗

2

[
KI(l, λ, t) − 3KII(l, λ, t) tg

θ∗

2

]
;

θ∗ = 2arctg
KI(l, λ, t) −

√
K 2

I (l, λ, t) + 8K 2
II(l, λ, t)

4KII(l, λ, t)
. (2.24)

Hence, the conditions of crack growth take the form

maxKIθ
(
l, λ, t, θ∗) = KIθ

(
l, λ∗, t∗, θ∗∗); (2.25)
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maxKIθ
(
l, λ, t, θ∗∗) − minKIθ

(
l, λ, t, θ∗∗) ≥ KIth; (2.26)

whereK Ith is the threshold of fatigue growthof themacrocrackby the normal opening.
Condition (2.26) can be also treated as the condition of transition from the stage of
macrocrack propagation by the mechanism of shear to the stage of growth by the
normal opening mechanism and used to determine the critical length of the shear
macrocrack lcτ. In general, the shear crack can also grow if condition (2.26) is already
satisfied; in this case, relation (2.26) turns into the branching condition. Here, we
assume that l0σ = lcτ. In order to determine the critical length lcσ, we use the following
conditions:

�KIθ = �KI f c (a) or �KIθ = �KI,2 - 3 (b), (2.27)

where �K Ifc is the critical range of the SIF K I upon attainment of which the crack
begins to grow spontaneously.

The transient conditions (2.23) and (2.26), which can be used to find the crack
lengths l0τ, lcτ and l0σ depending on the structure of the formulas that describe the
diagram of fatigue crack growth rate in the material in relations (2.17), were applied
in our calculations in a different form, namely,

�KIIθ(l0τ ) = �KII,vth (a) or �KIIθ(l0τ ) = �KII,1−2 (b), (2.28)

and

�KIθ(l0σ ) = �KI,vth (a) or �KIθ(l0σ ) = �KI,1−2 (b), (2.29)

where �Kvth = �K10−10 is the range of the conventional SIF threshold [109] corre-
sponding to a fatigue crack growth rate vth = 10−10 m/cycle and�K1–2 and�K2–3 are
the SIF ranges corresponding to the lower and upper bounds of the Paris rectilinear
segment in the fatigue fracture diagram of the material.

Algorithm for the construction of the propagation paths of fatigue cracks
in the zone of cyclic contact interaction of solids. The methods of step-by step
evaluation of the quasistatic paths of crack propagation in the two-dimensional case
were proposed by Savruk andOsiv [112] andYarema, andZboromyrskii [136]. Later,
these methods were developed in [25, 88] and generalized for the case of problems
of cyclic contact interaction of solids [13, 24, 28, 90].

The analysis of the crack path (trajectory) by the step-by-stepmethod is performed
by using the solutions of the corresponding singular integral equations.We determine
the geometry of propagating cracks with regard for the redistribution of stresses at the
crack tips in the course of crack propagation and control its growth rate by the range
of the parameter (stress intensity factor of mixed type) in a loading cycle, which is
connected with the SIF (K I and K II) in a certain way depending on the mechanism
(criterion) of local fracture at the crack tip (see relation (2.18)). For simplicity, we
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Fig. 2.22 Scheme of the
algorithm for the
construction of the fatigue
cracks propagation paths

assume that the crack propagates in the absence of contact of its faces and branching
at the tips.

Assume that a plate weakened by a curvilinear crack is subjected to the action of
cyclic loads and that the contour of the initial crack referred to a local coordinate
system x’O’y’ have its origin at a point a′

0 and the end at a point b′
0 (Fig. 2.22).

The numerical analysis of the path of fatigue crack is performed step by step.
Suppose that the crack is subjected to the action of external loading and begins to
grow from both tips in directions specified by certain angles θ∗+

1 and θ∗−
1 . These

angles are determined via the SIF K±
I and K±

II on the basis of the solution of the
singular integral equation of the plane problem of the theory of elasticity for the
analyzed domain (the superscripts “+” and “–” correspond to the right and left tips
of the crack, respectively). Note that the relation

f
(
KI, KII, θ∗) = 0 (2.30)

specifying the direction of crack growth in each stage via the SIF at the crack tip, is
established from the chosen criterion of local fracture (see, e.g., relations (2.21) and
(2.24)). If we now assume now that, in the process of growth, the crack got small
increments of length �l+1 and �l−1 from the right and left tips, respectively, then the
relationship between them is established by the formula for the crack growth rate

�l

�N
≈ v(�K , C1, . . . , Cm), (2.31)

where �l is the increment of crack length for �N loading cycles; �K is the range
of the parameter K regarded as constant for �N loading cycles, and C1, …, Cm are
the characteristics of crack growth resistance of the material.
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As a result of the solution of the singular integral equation of the problem for a
plate with newly formed crack, we find the SIF K±

I and K±
II in the second stage of

construction of the path. By using these SIF, we determine new values of the angles
of deviation of the crack (θ∗±

2 ), the ranges of the parameters K (K±
2 ), and current

increments of the path (�l±2 ). Consecutively repeating the outlined procedure, we
eventually arrive at a crack path in the form of a broken line (Fig. 2.22). In this case,
to establish the relationship between the increments of the right (+) and left (−)
branches of the path in the k-th stage, by using formula (2.31), we obtain

�l+k
�l−k

= v+
k

v−
k

, k = 1, . . . , j . (2.32)

It should be emphasized that, for the sake of simplicity, in the process of con-
struction of the path, the increment at one of the tips can be regarded as constant
and independent of the velocity of the motion of the tip. Then setting a constant
increment (�l+k = H = const, k = 1, …, j), e.g., at the right tip, we can find the
increment of the path at the left tip in the next stage according to relation (2.31) by

the following formula: �l−k = v(�K−, C1, ... , Cm)
v(�K+, C1, ... , Cm )

H, k = 1, . . . , j .
In the presence of kinks on the path, the procedure of construction of the solution

by the method of singular integral equations becomes much more complicated. In
this case, in order to use the algorithm efficiently, it is reasonable to approximate
segments of the path in the vicinity of the angular points by smooth curves. We now
consider the case of construction, e.g., of the right branch of the path or of the path
of edge crack in more detail.

In the next stage of construction of the path, we determine the abscissa of the right
crack tip after its increment by the formula [13, 14]

x ′
j = x ′

0 +
j∑

k=1

hk, (2.33)

where x ′
0 = Reb′

0 is the abscissa of the right tip of the initial crack, hk = H cos γk is
the increment of the abscissa in each stage of construction of the path, and γk is the
angle between the O′x′-axis and the direction of crack increment (Fig. 2.23).

In the first stage, the equation of the contour coincides with the equation of the
initial crack. We approximate the next increments of the path at the right tip by the
third-degree polynomials [112]

y′
j

(
x ′) = a j

(
x ′ − q j

)3 + b j
(
x ′ − q j

)2 + c j
(
x ′ − q j

) + d j , q j ≤ x ′ ≤ x ′
j ,

(2.34)

where

q j = x ′
j−1 − δ j

(
δ j ≥ 0

)
(2.35)
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Fig. 2.23 Scheme of the
path construction in j-th
stage

was is a parameter introduced with to smooth the path on the segment
[
q j , x ′

j

]
and

δ j =
{
h j

/
2, θ∗+

j �= 0;
0, θ∗+

j = 0.
(2.36)

Assume that

y′ = Γ j
(
x ′ − x ′

j−1

) + Y j−1
(
Γ j = tg γ j , Y j−1 = y′

j−1

(
x ′
j−1

))
(2.37)

is the equation of a straight line passing through the tip (x j−1, Y j−1) in the direction
of crack propagation, which is determined by the angle θ*. Then the unknown coef-
ficients of Eq. (2.34) can be found from the conditions that curve (2.34) is smoothly
connected with the curve y′ = y′

j−1

(
x ′) and the straight line (2.37) at the points

x ′ = q j and x ′ = x ′
j . Hence, we get

a j =
(
c j + Γ j

)(
h j + δ j

) + 2
(
d j − Y j−1 − Γ j h j

)
(
h j + δ j

)3 ;

b j =3
(
Y j−1 − d j + Γ j h j

) − (
Γ j + 2c j

)(
h j + δ j

)
(
h j + δ j

)2 ;

c j = dy′
j−1

(
x ′)

dx ′

∣∣∣∣∣
x ′=q j

; d j = y′
j−1

(
q j

)
. (2.38)

Similar results can be obtained for the left branch of the path.
Indeed, in the next stage of construction of the path, after the crack increment, we

determine the abscissa of the left crack tip by the formula
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x̃ ′
j = x̃ ′

0 −
j∑

k=1

h̃k, (2.39)

where x̃ ′
0 = Re a′

0, h̃k = �l−k cos γk , �l−k is an increment determined by equal-
ity (2.32), and γk is the angle between the O’x’-axis and the direction of the next
increment of the crack.

The approximating polynomials for the left crack tip in the next stage are given
by the formula

ỹ′
j

(
x ′) = ã j

(
x ′ − q j

)3 + b̃ j
(
x ′ − q j

)2 + c̃ j
(
x ′ − q j

) + d̃ j , x̃ ′
j ≤ x ′ ≤ q j

(2.40)

Here,

ã j =
(
c̃ j + Γ̃ j

)(
h̃ j + δ̃ j

)
+ 2

(
d̃ j − Ỹ j−1 − Γ̃ j h̃ j

)
(
h̃ j + δ̃ j

)3 ;

b̃ j =
3
(
Ỹ j−1 − d̃ j + Γ̃ j h̃ j

)
−

(
Γ̃ j + 2c̃ j

)(
h̃ j + δ̃ j

)
(
h̃ j + δ̃ j

)2 ;

c̃ j = d ỹ′
j−1

(
x ′)

dx ′

∣∣∣∣∣
x ′=q̃ j

; d̃ j = ỹ′
j−1

(
q̃ j

)
. (2.41)

q̃ j = x̃ ′
j + δ̃ j

(
δ j ≥ 0

); (2.42)

δ̃ j =
⎧⎨
⎩
h̃ j

/
2, θ∗−

j �= 0;
0, θ∗−

j = 0.
(2.43)

and the quantities 
 j , Ỹ j−1 determine the equation of the straight line

y′ = Γ̃ j
(
x ′ − x̃ ′

j−1

) + Ỹ j−1

(
Γ̃ j = tg γ̃ j , Ỹ j−1 = ỹ′

j−1

(
x̃ ′
j−1

))
, (2.44)

passing through the left crack tip (x̃ j−1, Ỹ j−1) in the direction of its propagation at
an angle θ∗−

j .
Thus, the coefficients of Eq. (2.34) and Eq. (2.40) can be found from relations

(2.35), (2.38) and (2.41), (2.42) if the geometry of the crack in the previous segments[
q j−1, x ′

j−1

]
and

[
x̃ ′

j−1, q̃ j−1

]
is known. In this case, the equation of the crack in

the next stage of construction of the path on the segment can be written in the form
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y′(x ′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ỹ′
j−1

(
x ′), x̃ ′

j−1 ≤ x ′ ≤ q̃ j−1;
ỹ′

k

(
x ′), q̃k+1 ≤ x ′ ≤ q̃k, k = 1, . . . , j − 2;

y′
0

(
x ′), q̃1 ≤ x ′ ≤ q1;

y′
k

(
x ′), qk ≤ x ′ ≤ qk+1, k = 1, . . . , j − 2;

y′
j−1

(
x ′), q j−1 ≤ x ′ ≤ x ′

j−1;

(2.45)

where the function y′
0

(
x ′) describes the contour of the initial crack on the segment[

Re a′
0, Re b

′
0

]
.

For the edge crack, the methods used for the construction of its path are simplified
because it is not necessary to use formula (2.32). If, e.g., the crack approaches the
edge of the plate by its left end a′

0, then the increments of the path occur only for the
crack right tip with constant steps H, and we can use relations (2.33)–(2.38) for our
calculations. This simplified version of the algorithm is also used in the case where
one of the crack tips becomes fixed due to the attainment of the threshold value of
the range of the parameter K at this tip.

Note that the determination of the crack path is completely terminated if the range
of the parameter K becomes equal to its threshold value at both tips of the growing
crack or if it attains its critical value �Kfc at one tip.
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Chapter 3
Singular Integral Equations for Some
Contact Problems of Elasticity Theory
for Bodies with Cracks

Abstract This chapter is devoted to the mathematical method of modeling of the
deformation and fracture process for elements ofmoving andfixed joints (tribojoints).
In this chapter, we deduce singular integral equations of some contact problems of
the elasticity theory for bodies with cracks. The Kolosov-Muskhelishvili complex
potentials for the analyzed problems are represented in the form of integral represen-
tations with Cauchy-type kernels with respect to the derivatives of the discontinuities
of displacements on the crack contours. In the general case, the problems are reduced
to systems of singular integral equations of the first kind. We propose singular inte-
gral equations (SIE) for the elastic half-plane weakened by a system of curvilinear
cracks under the action of various model contact loads applied to the boundary of the
half-plane. We briefly describe the Gauss-Chebyshev method of mechanical quadra-
tures that enables one to efficiently construct the numerical solutions of these SIE.
We also deduce the relations for the stress intensity factors at the crack tips can be
expressed via the solutions of SIE for inside and edge curvilinear cracks in the half-
plane. In this chapter, we present both known results available from the literature
and new results.

3.1 Some Input Theses and Relations for Plane Problem
of Elasticity Theory

This is an auxiliary section. In what follows, one can find some data on the plane
problem of the theory of elasticity required for our subsequent presentation. Thus,
we present the Kolosov-Muskhelishvili relations [31, 37], which enable us to reduce
the problem of determination of the stress-strain state of the elastic body to the
construction of functions of complex variables. We study the method of singular
integral equations (SIE) aimed at the solution of the first and second main problems
of the theory of elasticity for bodies weakened by system of rectilinear [11, 44] and
curvilinear [49, 53] cracks. The asymptotic representation of the stress-strain state
in the vicinity of the crack tips is obtained in terms of the stress intensity factors
[5, 64, 65]. We also propose a brief presentation of the Gauss-Chebyshev method of

© Springer Nature Switzerland AG 2020
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Fig. 3.1 Components of the
vector of the stresses N and
T on the contour L of the
elastic domain S

mechanical quadratures [20, 44, 53], which is an efficient tool for the construction
of numerical solutions of the SIE for numerous important problems.

Basic relations of the plane (two-dimensional) problem of the elasticity the-
ory. The elastic equilibrium of solid bodies can be described by the equations of
the plane problem of the theory of elasticity either in the case of plane deformation
of the bodies with constant cross sections subjected to the action of external forces
located in these cross sections or in the case of generalized plane stressed state, i.e.,
under the conditions of deformation of a thin plate by forces acting in its plane. For
the evaluation of the stress-strain state at any point of the deformed elastic isotropic
body, it is necessary to find three components of the stress tensor σx, σy, and τxy
(Fig. 3.1) and two components of the vector of displacements i and v. If a Cartesian
coordinate system is chosen so that the plane xOy coincides either with the cross
section of a cylinder or with the middle plane of the plate, then, under the conditions
of plane problem of the theory of elasticity, the indicated components, are functions
of two variables (x and y).

We now introduce a stress function Airy U(x, y) [37] by the formulas

σx = ∂2U

∂y2
; σy = ∂2U

∂x2
; τxy = − ∂2U

∂x∂y
. (3.1)

Then the solution of the plane problem of the theory of elasticity, even in the
absence of bulk forces, is reduced to the integration of a biharmonic equation

∂4U

∂x4
+ 2

∂4U

∂x2∂y2
+ ∂4U

∂y4
= 0 (3.2)

with given boundary conditions on the contour L of the domain S (Fig. 3.1).
The general solution of Eq. (3.2) can be represented in terms of two analytic

functions ϕ(z) and χ(z) of one complex argument z = x + iy by the following
Goursat formula:

U (x, y) = Re[z̄ϕ(z) + χ(z)], z̄ = x − iy, (3.3)

In [31, 37], it was shown that the components of stresses σx, σy and τxy and
displacements i and v are expressed via the complex potentials �(z) and �(z) by
the formulas
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σx + σy = 2
[
�(z) + �(z)

]; (3.4)

σy − σx + 2iτxy = 2
[
z̄�′(z) + �(z)

]; (3.5)

2G(u + iv) = æϕ(z) − z�(z) − ψ(z); (3.6)

�(z) = ϕ′(z); �(z) = ψ ′(z); ψ(z) = χ ′(z).

Here, i and v are the components of the vector of displacements in the directions
of the x- and y-axes; G = E/2(1 + μ) is the shear modulus, E is Young’s modulus;
μ is Poisson’s ratio; æ = 3–4μ in the case of plane deformation, and æ = (3 – μ)/(1
+ μ) for the generalized plane stressed state. The principal vector of forces acting
from the right upon an arc AB located inside the plate or on its contour if we move
along this arc from A to B is given by the formulas

X + iY = −i[μ(z)]BA = −i

B∫

A

μ′(z)dz; (3.7)

μ(z) = ϕ(z) + zϕ′(z) + ψ(z), (3.8)

where X and Y are the projections of the principal vector on the axes Ox and Oy; []BA
is the difference between the expressions in brackets taken for the values of z at the
points B and A.

For the principal moment of the analyzed forces relative to the origin, we can
write

M = Re
[
χ(z) − zψ(z) − zz̄ϕ′(z)

]B
A

= Re

{
B∫

A
μ(z)dz − [z̄ψ(z) + zψ(z) + zz̄ϕ′(z)

]B
A

}

=

= Re

{
B∫

A
μ(z)dz − [zμ(z)

]B
A

}

= −Re
B∫

A
z̄μ′(z)dz.

(3.9)

It is known [37] that the functions �(z) and �(z) are not invariant under the
transformations of the Cartesian coordinate system. Thus, if the new coordinate
system x1O1y1 is connected with the old system xOy by the formula

z = z1e
iα + z01, (3.10)

and the functions �1(z1) and �1(z1) play the same role in the system x1O1y1 as the
functions �(z) and �(z) in the system xOy, then we get
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Fig. 3.2 The components of
the stress tensor in a polar
coordinate system

�(z) = �1(z1); z1 = e−iα
(
z − z01

);
�(z) = e−2iα

[
�1(z1) − z̄01e

iα�′
1(z1)

];
�(z) + z̄�′(z) = e−2iα

[
�1(z1) + z̄1�′

1(z1)
]
.

(3.11)

Here, z1 = x1 + iy1; z01 = x01 + iy01 ; x
0
1 , y01 are the coordinates of the point O1 in

the old coordinate system.
The components σr , σθ and τrθ of the stress tensor and the components of the dis-

placements vector vr and vθ in a polar coordinate system r, θ (Fig. 3.2) are expressed
via the corresponding components of stresses and displacements in Cartesian coor-
dinates by the following formulas:

σr + σθ = σx + σy; σθ − σr + 2iτrθ = e2iθ
(
σy − σx + 2iτxy

); (3.12)

vr + ivθ = e−iθ(u + iv). (3.13)

The solution of the plane problem of the theory of elasticity is reduced to finding
two analytic functionsϕ(z) andψ(z) in domain S taking the required boundary values
of these functions on the contour L of the domain S occupied by a deformed elastic
body (on the boundary of the body). For the first main problem, i.e., in the case
where external stresses are given on the boundary L, the boundary condition for
these functions takes the form

ϕ(t) + tϕ′(t) + ψ(t) = i

s∫

0

(Xn + iYn)ds + C, t ∈ L , (3.14)

where Xp and Yp are the components of given forces in the zone with outer normal
p, t is a variable point of the contour L, s is the corresponding arc abscissa, and C is
an arbitrary complex constant.

For the second main problem, i.e., in the case where displacements are given on
the contour L, we arrive at the boundary condition as a result of the limit transition
from relation (3.6)

æϕ(t) − tϕ′(t) − ψ(t) = 2G[u(t) + iv(t)] , t ∈ L . (3.15)
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Fig. 3.3 The multiply
connected domain

Here, u(t) and v(t) are known functions on L.
Differentiating expression (3.14) with respect to t, we obtain another form of the

boundary conditions for the first main problem

�(t) + �(t) + dt̄

dt

[
t�′(t) + �(t)

] = N + iT, t ∈ L , (3.16)

where N and T are, respectively, the given normal and tangential components of
external stresses acting upon the boundary of the body (see Fig. 3.1).

Similarly, for the second main problem, it follows from relation (3.15) that

æ�(t) − �(t) − dt̄

dt

[
t�′(t) + �(t)

] = 2G
[
u′(t) + iv′(t)

]
, t ∈ L . (3.17)

In the boundary conditions (3.16), (3.17), the derivatives have the form

dt̄

dt
= dt̄

ds

/
dt

ds
= −e−2iα and

dt

ds
= dx

ds
+ i

dy

ds
= − sin α + i cosα = ieiα,

(3.18)

where α is the angle formed by the outer normal to the contour and the Ox-axis (see
Fig. 3.1).

For a multiply connected domain (Fig. 3.3), the functions �(z) and �(z) (under
the conditions of single-valuedness of displacements) take the form (in any its end
part)

�(z) = − 1

2π(1 + æ)

m∑

k=1

Xk + iYk
z − zk

+ �∗(z);

�(z) = 1

2π(1 + æ)

m∑

k=1

[
æ(Xk − iYk)

z − zk
− z̄k(Xk + iYk)

(z − zk)
2

]
+ �∗(z). (3.19)

Here, Xk and Yk are the components of the principal vector of external forces
applied to the closed contour Lk (k = 1, 2, …, t), which is not self-crossing, zk is
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a arbitrary fixed point inside the contour Lk , and the functions �*(z) and �*(z) are
holomorphic in S.

For the infinitemultiply connected domain, i.e., if the contourL0 is entirely located
at infinity, the complex potentials �(z) and �(z) take the form

�(z) = − X+iY
2π(1+æ)z + B + iC + �0(z);

�(z) = æ(X−iY )

2π(1+æ)z + B ′ + iC ′ + �0(z).
(3.20)

Here

X =
m∑

k=1

Xk; Y =
m∑

k=1

Yk (3.21)

are the components of the vector of external forces applied to the boundary of the
domain S and the functions �0(z) and �0(z) for large |z| are expanded in the series

�0(z) = a1
z2

+ a2
z3

+ · · · ; �0(z) = b1
z2

+ b2
z3

+ · · · , (3.22)

where ai and bi are complex constants. The real constants B, B′ and C′ are expressed
via the values of the principal stresses p and q at infinity by the formulas

B = p + q

2
; B ′ + iC ′ = −1

2
(p − q)e−2iα1 , (3.23)

where α1 is the angle between the Ox-axis and the direction of action of the stress p;
the constant C is caused by the rotation at infinity and does not affect the distribution
of stresses.

Some statements from the theory of analytic functions. In what follows, we
present results on the theory of analytic functions necessary for our subsequent pre-
sentation. The detailed information about analytic functions, Cauchy-type integrals,
and singular equations can be found, e.g., in the monographs [22, 36, 37].

Cauchy-type integrals. Let L be a simple closed (or open) smooth contour in the
plane of complex variable z = x + iy or a collection of finitely many contours of this
kind without common points and let f (t) be an absolutely integrable function given
on L (except, possibly, finitely many points). Then the integral

F(z) = 1

2π i

∫

L

f (t)dt

t − z
(3.24)

is an analytic function in the entire complex plane except the points of the contour
L. It is customary to call this integral a Cauchy-type integral, the function f (t) is
called its density, and the expression 1/(t – z) is called the kernel. If the function f (t)
satisfies the Hölder condition (condition H(v) or H) on L, i.e., if for any two points
of the contour L, the inequality
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| f (t2) − f (t1)| ≤ A|t2 − t1|v, A > 0, 0 < v ≤ 1, (3.25)

holds, then integral (3.24) has the limiting values F+(t0) and F−(t0) at all points t0
of the contour L that do not coincide with its ends as z → t0 from the left (+) and
from the right (–), respectively, relative to the chosen positive direction of traversing
the contour. These limiting values also satisfy the conditionH(v) and are determined
by the Sochocki-Plemelj formulas [22, 36]

F+(t0) = 1

2
f (t0) + 1

2π i

∫

L

f (t)dt

t − t0
; F−(t0) = −1

2
f (t0) + 1

2π i

∫

L

f (t)dt

t − t0
;

t0 ∈ L .

(3.26)

Here, the integral on the right-hand sides is understood in the sense of the Cauchy
principal value, i.e.,

∫

L

f (t)dt

t − t0
= lim

ε→0

∫

L−Lε

f (t)dt

t − t0
, t0 ∈ L , (3.27)

where Lε is a part of the curve L located inside the circle |z − t0| < ε. It is customary
to say that integrals (3.27) are singular integrals. Relations (3.26) remain true in the
case where L is a arbitrary piecewise-smooth line under the condition that the point
t0 differs from the nodes (including the ends) and f (t) satisfies the conditionH in the
vicinity of t0.

Consider an integral

�(z) = 1

2π i

∫

L

ϕ(t)dt

t − z
, (3.28)

where ϕ(t) ∈ H, i.e., satisfies condition (3.25). In view of the relation

dt
/
dt = e−2iθ(t), t ∈ L , (3.29)

where θ(t) is the angle formed by the positive tangent to the contour L at the point
t and the Ox-axis, under the assumption that L is a Lyapunov curve, i.e., the angle
θ(t) satisfies the condition H, for the limiting values of integral (3.28), we obtain the
following expression:

�±(t0) = ±1

2
ϕ(t0)

dt̄0
dt0

+ 1

2π i

∫

L

ϕ(t)dt

t − t0
, t0 ∈ L . (3.30)

Relation (3.30) follows from relations (3.26) if the function ϕ(t)dt
/
dt satisfies

the condition H. Note that the direction of traversing the contour is assumed to be
the positive direction of the tangent.
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We now find the limiting values of the integral

F(z, z̄) = 1

2π i

∫

L

(
t̄ − z̄

)
f (t)

(t − z)2
dt, (3.31)

where L is a closed or open Lyapunov contour and f (t) satisfies the condition H(v).
As above (see also [53], p. 12), we conclude that the limiting values of integral (3.31)
at the points t0 of the contour L that do not coincide with the nodes are given by the
formulas

F±(t0, t̄0
) = ±1

2
f (t0)

dt̄0
dt0

+ 1

2π i

∫

L

(
t̄ − t̄0

)
f (t)

t − t0
dt, (3.32)

where the derivative on the right-hand side of the equality is given by formula (3.29).
Inversion formulas for the Cauchy-type integral. Let L be a collection of finitely

many closed smooth contours without common points and let the positive direction
be chosen so that, in the case of motion along L, the domain S remains to the left
(see Fig. 3.3). Consider an integral equation

1

π

∫

L

ϕ(t)dt

t − τ
= f (τ), (3.33)

where f (t) is a function from the classH given on L and ϕ(t) is an unknown function,
which also belongs to the class H. The unique solution of this equation is given by
the following formula [36]:

ϕ(τ) = − 1

π

∫

L

f (t)dt

t − τ
= f (τ), τ ∈ L . (3.34)

Assume that the contour L in Eq. (3.33) consists of a collection of m smooth
disjoint open arcs Lk (k = 1, …, m) whose ends are ak and bk (positive traversing of
the contour is performed from ak to bk). Also let the function f (t) belong to the class
H and let the unknown function ϕ(t) belong to the class H*, i.e., let ϕ(t) satisfy the
condition H in each closed sections of the contour that does not contain nodes and
can be represented, near each node (c), in the form

ϕ(t) = ϕ∗(t)
|t − c|α , 0 ≤ α = const < 1,

where ϕ*(t) belongs to the class H in the vicinity of c. Then Eq. (3.33) has solutions
of different classes (bounded or unbounded near the ends ak and bk). In particular,
the solution of this equation which is not bounded at all ends of the contours Lk has
the form [22, 36]
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ϕ(τ) = − 1

πR(τ)

∫

L

R(t) f (t)

t − τ
dt + Pm−1(τ)

R(τ)
, (3.35)

where Pm–1(τ) is an arbitrary polynomial of degree no greater than m – 1 and R(t) is
the limit value of the canonical function

R(z) =
m∏

k=1

√
(z − ak)(z − bk) (3.36)

on approaching the contour from the left, i.e.,

R(t) = R+(t) = −R−(t).

We now write Eq. (3.35) for the case where the contour L is a segment of the real
axis –l ≤ t ≤ l,

ϕ(τ) = 1

π
√
l2 − τ2

⎡

⎣−
l∫

−l

√
l2 − τ2 f (t)

t − τ
dt + C

⎤

⎦. (3.37)

Here, the constant C is determined from the additional condition imposed on the
solution ϕ(t). The value of the integral of ϕ(t) along L is, as a rule, known. Thus, it
follows from solution (3.37) that

C =
l∫

−l

ϕ(t)dt . (3.38)

The constant C can be chosen to guarantee the boundedness of the solution at
one end of the segment |t | ≤ l. Thus, the solution bounded at the point τ = l and
unbounded for τ = –l, has the form

ϕ(τ) = − 1

π

√
l − τ

l + τ

l∫

−l

√
l + t

l − t

f (t)dt

t − τ
. (3.39)

A large number of works (see the bibliography in themonograph [36]) are devoted
to the solution of Eq. (3.33), which plays an important role in various problems of
mathematical physics.
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3.2 Stress-Strain State of Elastic Plate With Smooth
Curvilinear Cut

Integral representations of the complex stress potentials [53]. Consider the main
boundary problemsof the two-dimensional theory of elasticity for an infinite isotropic
plane weakened by a smooth curvilinear cut L with origin at a point a and end at a
point b.

First, we obtain the solution of the auxiliary problem for the case where the jumps
of stresses and the derivatives of displacements are given on the cut

(N + iT )+ − (N + iT )− = 2q(t), t ∈ L; (3.40)

d

dt

[
(u + iv)+ − (u + iv)−

] = i(1 + æ)

2G
g′(t), t ∈ L . (3.41)

In this case, at the ends of the cut, the jump of displacements is absent

g(a) − g(b) = 0. (3.42)

Moreover, the stresses and rotations are absent at infinity.
Assume that the functions q(t) and g’(t) belong to the classH*. By using relations

(3.16) and (3.17) and representing the left-hand sides of equalities (3.40) and (3.41)
via the complex potentials �(z) and �(z), after simple transformations, we obtain

�+(t) − �−(t) = i
[
g′(t) − 2iq(t)

/
(1 + æ)

] = i Q(t), t ∈ L; (3.43)

[
t̄�′(t) + �(t)

]+ − [t̄�′(t) + �(t)
]− = i

[
Q(t) − 2iq(t) − Q(t)

]dt̄
dt

, t ∈ L .

(3.44)

Equality (3.43) represents a problem of conjugation for the piecewise-
holomorphic function �(z). The solution of this problem vanishing at infinity is
given by the following Cauchy-type integral [37]:

�(z) = 1

2π

∫

L

Q(t)dt

t − z
. (3.45)

We seek the potential �(z) in the form

�(z) = − 1

2π

∫

L

t̄ Q(t)dt

(t − z)2
+ �(z), (3.46)

where the unknown function �(z) is also piecewise holomorphic in the entire plane,
including the infinitely distant point.Byusing relations (3.32) and (3.46), and equality
(3.44), we get the following problem of conjugation for the function �(z):
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�+(t) − �−(t) = i
[
Q(t) − 2iq(t)

]dt̄
dt

, t ∈ L . (3.47)

The solution of this problem has the form

�(z) = 1

2π

∫

L

Q(t) − 2iq(t)

t − z
dt . (3.48)

In view of (3.46), we get

�(z) = 1

2π

∫

L

[
Q(t) − 2iq(t)

t − z
dt − t̄ Q(t)dt

(t − z)2

]

. (3.49)

Thus, functions (3.45) and (3.49) give the solution of the posed auxiliary problem
(3.40), (3.41) in the general case of a nonself-balanced load q(t). These solutions
can also be regarded as integral representations of the complex stress potentials�(z)
and �(z) for an infinite plane containing a cut made along the contour L.

Integral equations of the main boundary problems. By using the represen-
tations of complex potentials (3.45) and (3.49), we can consider various boundary
problems for the infinite plane weakened by a cut L. Assume that nonself-balanced
forces (the first main problem)

N± + iT± = p(t) ± q(t), t ∈ L (3.50)

or the derivatives of displacements (the second main problem)

2G
d

dt

(
u± + iv±) = f ′(t) ∓ 1 + æ

2i
g′(t), t ∈ L , (3.51)

are given on the faces of the cut. In this case, the stresses and rotations are absent at
infinity. In the first main problem, we also assume that the cut (crack) faces are not
in contact. The functions p(t) and q(t) in (3.50) and f ′(t) and g′(t) in (3.51) belong
to the class H.

For these problems, we seek the complex potentials �(z) and �(z) in the form
(3.45) and (3.49) under the assumption that the function g′(t) is unknown in the
first main problem and the function q(t) is unknown in the second main problem.
Satisfying the boundary condition (3.50) with the help of relations (3.16), (3.26),
(3.30), and (3.32), we get the following singular integral equation for the function
g′(t) [49]:

1

2π

∫

L

[
2Q(t) + 2iq(t)

t − t ′
dt + k1

(
t, t ′
)
(Q(t) + 2iq(t))dt + k2

(
t, t ′
)
Q(t) dt

]

= p
(
t ′
)
, t ′ ∈ L ,

(3.52)
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where the regular kernels k1(t, t’) and k2(t, t’) have the form

k1
(
t, t ′
) = d

dt ′
ln
t − t ′

t̄ − t̄ ′
; k2

(
t, t ′
) = − d

dt ′
t − t ′

t̄ − t̄ ′
. (3.53)

The solution of Eq. (3.52) must satisfy the condition

∫

L

g′(t)dt = 0, (3.54)

which guarantees the single-valuedness of displacements in traversing the contour
L. This condition also follows from (3.42).

In the case where the cut (crack) faces are subjected to the action of self-balanced
loads, in relation (3.50), we get q(t) = 0 and Q(t) = g′(t) [see (3.43)]. Then the
singular equation (3.52) can be simplified as follows:

1

2π

∫

L

[
K
(
t, t ′
)
g′(t)dt + L

(
t, t ′
)
g′(t)dt

] = p
(
t ′
)
, t ′ ∈ L , (3.55)

where the kernels K(t, t′) and L(t, t′) are given by the formulas

K
(
t, t ′
) = 1

t − t ′
+ 1

2

d

dt ′

(
ln

t − t ′

t̄ − t̄ ′

)
= 1

2

[
1

t − t ′
+ 1

t̄ − t̄ ′
dt ′

dt ′

]

;

L
(
t, t ′
) = −1

2

d

dt ′

(
t − t ′

t̄ − t̄ ′

)
= 1

2

[
1

t̄ − t̄ ′
− t − t ′
(
t̄ − t̄ ′

)2
dt ′

dt ′

]

. (3.56)

Moreover, condition (3.54) must be satisfied.
Similarly, by using relations (3.17), (3.26), (3.30), and (3.32) and satisfying the

boundary conditions (3.51), we write the singular integral equation of the second
main problem

1

2π

∫

L

[ (æ − 1)Q(t) − 2iq(t)

t − t ′
dt + k1

(
t, t ′
)
(Q(t) + 2iq(t))dt

− k2
(
t, t ′
)
Q(t) dt

]

= f ′(t ′
)
, t ′ ∈ L ,

(3.57)

where the kernels k1(t, t’) and k2(t, t’) are the same as in Eq. (3.52).
Assume that, as in the solution of the second main problem for the plane with

cuts [37], the principal vector of forces applied to the cut L (with projections X and
Y onto the Ox- and Oy-axes, respectively). Then the unknown function in Eq. (3.57)
satisfies the additional condition
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∫

L

q(t)dt = i

2
(X + iY ), (3.58)

which follows from equality (3.7). Indeed, integrating equality (3.7) along the faces
of the cut L and taking into account the fact that

[
μ′(t)

]+ − [μ′(t)
]− = 2q(t), t ∈ L (3.59)

we arrive at relation (3.58).
The singular integral equations (3.52) and (3.57) belong to the type of equations

studied in detail in [36]. In the class of functions unbounded near the ends a and b,
i.e., in the class h0 with the index κ = 1 ([36], p. 256), Eqs. (3.52) and (3.57) are
always solvable. Under conditions (3.54) and (3.58), the solution of these equations
is unique. Note that Eqs. (3.52) and (3.57) can also be represented in the form

�(t) + �(t ′) + dt̄ ′

dt ′
[
t ′�′(t ′) + �(t ′)

] = p
(
t ′
)
, t ′ ∈ L , (3.60)

æ�(t) − �(t ′) − dt̄ ′

dt ′
[
t ′�′(t ′) + �(t ′)

] = f ′(t ′
)
, t ′ ∈ L , (3.61)

where �(t’) and �(t’) are direct values of the potentials �(z) and �(z), i.e., these
values are obtained by the direct substitution of z = t’ in the expressions for �(z)
and �(z). Relations (3.60) and (3.61) enable us to easily construct singular integral
equations of the first and second main problems for domains with cuts if the integral
representations of the complex potentials �(z) and �(z) in terms of the jumps of
stresses and displacements on these cuts are known.

3.3 Stress Intensity Factors

Distributions of stresses and displacements in the vicinity of tips of the cracks.
Consider the case of curvilinear crack (cut) whose faces are subjected to the action of
the external load (3.50). The solution of this problem is given by potentials (3.45) and
(3.49) in which the function q(t) satisfies the condition H and the function g′(t), i.e.,
the solution of Eq. (3.52), belongs to the class H*. Thus, near the tips of the crack
L, the principal term of the asymptotic expansions of stresses and displacements
depends only on the function g′(t). It follows from the theory of singular integral
equations [36] [see also solution (3.35)] that the function g′(t) near the beginning of
the crack a = l− and its end b = l+ can be represented in the form

g′(t) = g∗(t)√
t − l±

, (3.62)
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Fig. 3.4 Curvilinear crack
in elastic plane

where g*(t) is a function that belongs to the class H on L in the vicinity of the ends
l± and

√
t − l± is any of these branches, which continuously varies on L.

By using the well-known results on the behavior of the Cauchy-type integral near
the ends of the line of integration [36] and the value of the integral

∫

L

(
t̄ − z̄

)
dt√

t − l±(t − z)2
=
∫

L

(
t̄ − l̄±

)

(t − l±)

√
t − l±dt
(t − z)2

+ (l̄± − z̄
)×

×
∫

L

dt√
t − l±(t − z)2

= 1

2

∫

L

(
t̄ − l̄±

)

(t − l±)

dt√
t − l±(t − z)

+

+(l̄± − z̄
) ∫

L

dt√
t − l±(t − z)2

+ O
(
r0
) = π i

2
√
z − l±

(
e−2iω± + z̄ − l̄±

z − l±

)
+ O

(
r0
)

(3.63)

in the vicinity of z = l±, we can represent the functions �(z) and �(z) + z̄�′(z) at
points quite close to l± but are not located on L in the form

�(z) = ig∗
(
l±
)

2
√
z − l±

+ O
(
r0
);

�(z) + z̄�′(z) = − ig∗
(
l±
)

4
√
z − l±

(
e−2iω± + z̄ − l̄±

z − l±

)
− ig∗(l±)

2
√
z − l±

e−iω± + O
(
r0
)
,

(3.64)

where ω+ = θ(l+), ω– = θ(l–) + π, θ(l±) is the angle between the direction of the
positive tangent to L at the ends l± and the Ox-axis (Fig. 3.4);

√
z − l± is a branch

holomorphic near l± in the plane weakened by a crack made along L and taking the
value

√
t − t± on the left side of L; r = ∣∣z − l±

∣∣, and O(rn) means that the ratio
O(rn)/rn is bounded as z → l±.

To determine the distribution of stresses and displacements in a small vicinity of
the crack ends, we pass to a new (polar) coordinate system with origin at the crack
tip z = l+ (or z = l–) (Fig. 3.4), i.e., we set
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z = l± + z1e
iω±; z1 = reiθ, −π < θ < π. (3.65)

By using the formulas of transformation of the complex potentials in passing to
the new coordinate system (3.11), in view of (3.64), we get

�1(z1) = K±
I − i K±

II

2
√
2π z1

+ O
(
r0
);

�1(z1) + z̄1�
′
1(z1) = i K±

II√
2π z1

+ K±
I − i K±

II

4
√
2π z1

(
1 − z̄1

z1

)
+ O

(
r0
)
,

(3.66)

where

K±
I − i K±

II = ∓ lim
t→l±

[√
2π |t − l±|g′(t)

]
. (3.67)

Here and in what follows, the real quantities K±
I and K±

II with lower signs corre-
spond to the beginning of the crack (z = a = l–), while the real quantities with the
upper sign correspond to its end (z = b = l+) (Fig. 3.4).

On the basis of relations (3.4)–(3.6) and (3.66), we determine the asymptotic
distributions of stresses and displacements in the vicinities of the tips of curvilinear
cracks [as a two-dimensional analog of relations (2.2)–(2.4)]:

⎛

⎜
⎝

σy

σx

τxy

⎞

⎟
⎠ = K±

I

4
√
2πr

⎡

⎢⎢
⎢⎢⎢
⎣

5 cos
θ

2
− cos

5θ

2

3 cos
θ

2
+ cos

5θ

2

− sin
θ

2
+ sin

5θ

2

⎤

⎥⎥
⎥⎥⎥
⎦

+ K±
II

4
√
2πr

⎡

⎢⎢
⎢⎢⎢
⎣

− sin
θ

2
+ sin

5θ

2

−7 sin
θ

2
− sin

5θ

2

3 cos
θ

2
+ cos

5θ

2

⎤

⎥⎥
⎥⎥⎥
⎦

+ O
(
r0
); 4G

(
u

v

)

= K±
I

√
r

2π

⎛

⎜
⎝

(2æ − 1) cos
θ

2
− cos

3θ

2

(2æ + 1) sin
θ

2
− sin

3θ

2

⎞

⎟
⎠

+ K±
II

√
r

2π

⎛

⎜
⎝

(2æ + 3) sin
θ

2
+ sin

3θ

2

−(2æ − 3) cos
θ

2
− cos

3θ

2

⎞

⎟
⎠+ O(r). (3.68)

Here, σx, σy, τxy and i, v are the components of stresses and displacements in the
local coordinate system x1y1 with origin at the crack tip (see Fig. 3.4). The quantities
K±

I and K±
II are called the stress intensity factors for the distributions of stresses

symmetric or antisymmetric about the crack line, respectively (in what follows, we
sometimes omit the superscripts “+” and “–” and understand the quantities K I and
K II as the stress intensity factors either at the beginning of the crack or at its end.
They are functions of the load and the parameters characterizing the configuration
of the body and the shape of the crack and can be found from the solution of the
problem of the theory of elasticity.
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The stress intensity factors play an extremely important role in the mechanics
of brittle fracture [5, 27, 39, 46, 57]. The fact that the distributions of stresses and
displacements near the crack tip always have the same functional dependence in the
polar coordinates (r, θ) with origin at the crack tip for any configuration of the body,
shape of the crack, and external load is quite important. Thus, the stress intensity
factors can be regarded as the parameters reflecting the redistribution of stresses in
the body as a result of crack initiation. Therefore, the distribution of stresses in a
small vicinity of the crack tip can be found if we determine the values of the stress
intensity factors K I and K II.

The independence of the asymptotic distributions (3.68) of stresses and displace-
ments over r and θ on the crack shape the follows from the representation of solution
of the singular integral equation (3.52) near the crack tip in the form (3.62). Thus,
relations (3.68) are true in the general case of configuration of the body and the crack
shape. In [5], Cherepanov rigorously proved the general character of distribution
(3.68).

Relations (3.68) can be also obtained from the asymptotic distributions of the
exact solutions of various partial problems in a small vicinity of the crack tip. The
asymptotic relations (3.68) in [64, 65] were established just by using this method.

In a similar way, we can deduce the asymptotic relations for the stress distributions
near the ends of a curvilinear cutwith displacements specifiedon its faces. In this case,
the function q(t) satisfies representation (3.62) and the function g′(t) is bounded near
the ends of the cut. These distributions are not presented because, in what follows,
we mainly consider the cases where external loads are applied on the faces of the
cuts.

Stress intensity factors for rectilinear and curvilinear cracks.
Rectilinear cracks [44]. Consider the problem of determination of the stress-

strain state of an infinite plane containing a rectilinear crack (cut) | x | ≤ l along the
Ox-axis whose faces are loaded by nonself-balanced forces (3.50) and the stresses
are absent at infinity. For this problem, equality (3.52) yields the following integral
equation:

1

π

l∫

−l

Q(t) + iq(t)

t − x
dt = p(x), | x | < l. (3.69)

Under condition (3.54), in view of (3.37) and (3.38), this equation has the follow-
ing solution:

g′(x) = −i
æ − 1

æ + 1
q(x) − 1

π
√
l2 − x2

⎡

⎣
l∫

−l

√
l2 − t2 p(t)dt

t − x
− i

æ − 1

æ + 1

l∫

−l

q(t)dt

⎤

⎦.

(3.70)
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Substituting solution (3.70) in relations (3.45) and (3.49), we easily obtain the
expressions for the complexpotentials�(z) and�(z),which coincidewith the expres-
sions presented in [37]. On the basis of relations (3.67) and (3.70), we determine the
stress intensity factors

K±
I − i K±

II = − 1√
πl

⎡

⎣
l∫

−l

√
l ± t

l ∓ t
p(t)dt ± i

æ − 1

æ + 1

l∫

−l

q(t)dt

⎤

⎦. (3.71)

Here, the point x = – l is the beginning of the crack and the point x = + l is its
end. Formula (3.71) was deduced for the first time (in a different way) in [58].

We now present the stress intensity factors for some special cases of loading.
Assume that the crack faces are loaded by self-balanced (q(t)= 0) constant normal σ
and tangential τ forces (p(t) = –σ – iτ = const). Thus, it follows from relation (3.71)
that

K±
I − i K±

II = (σ − iτ)
√

πl, (3.72)

whence, in particular, by the superpositionmethod, we can get the values of the stress
intensity factors for the cases where an infinite plane weakened by a load-free crack
is subjected to tension by external forces p and q applied at infinity and acting in
mutually perpendicular directions [see relations (3.20) and (3.23)]. In this case,

K±
I − i K±

II = 1

2

[
p + q − (p − q)e2iα1

]√
πl. (3.73)

Assume that normalP and shearQ forces of the samemagnitude but with opposite
directions are applied at points x = ξ (|ξ | < l) on the upper and lower crack faces,
i.e.,

p(x) = −(P − i Q) δ(x − ξ); q(x) = 0, (3.74)

where δ(x – ξ) is the delta-function [62]. Substituting (3.74) in relation (3.71), we
find

K±
I − i K±

II = P − i Q√
πl

√
l ± ξ

l ∓ ξ
. (3.75)

Note that the delta-function δ(x) is equal to zero for x 	= 0 and to infinity for x =
0. Hence, in this case,

∞∫

−∞
δ(x)dx = 1;

b∫

a

f (ξ)δ(ξ − x)dξ =

⎧
⎪⎨

⎪⎩

0 for x < a and x > b;
f (x) for a < x < b;

f (x)
/
2 for x = a or x = b.
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The obtained exact solutions can be used to construct approximate solutions for
the curvilinear crack slightly different from a rectilinear (or arcwise) curve by the
perturbation method (see [50, 53]).

Curvilinear crack [50, 53]. Consider the integral equation (3.55). Assume that
the shape of a smooth curvilinear crack L is determined by the following parametric
equation:

x = x(ξ), y = y(ξ), |ξ | ≤ 1. (3.76)

In view of the fact that, for smooth contours, the functions x(ξ) and y(ξ) have
continuous derivatives x′(ξ) and y′(ξ), which are not simultaneously, equal to zero
(see [36], p. 13), we can perform the following change of variables in Eq. (3.55) [22,
50]:

t = lω(ξ) = l[x(ξ) + iy(ξ)], |ξ | ≤ 1, t ′ = lω(η), |η| ≤ 1. (3.77)

As a result, Eq. (3.55) and condition (3.54), take the following canonical dimen-
sionless form [49, 53]:

1∫

−1

[
M(ξ, η) ϕ(ξ) + N (ξ, η) ϕ(ξ)

]
dξ = πp(η), |η| < 1. (3.78)

1∫

−1

ϕ(ξ)dξ = 0, (3.79)

where

M(ξ, η) = lK (lω(ξ), lω(η)) = 1

2

[
1

ω(ξ) − ω(η)
+ 1

ω(ξ) − ω(η)

ω′(η)

ω′(η)

]

;

N (ξ, η) = l L(lω(ξ), lω(η)) = 1

2

[
1

ω(ξ) − ω(η)
− ω(ξ) − ω(η)
(
ω(ξ) − ω(η)

)2
ω′(η)

ω′(η)

]

;
ϕ(ξ) = g′(lω(ξ)) ω′(ξ)

/
p; p(η) = p(lω(η))

/
p.

(3.80)

The stress intensity factors are given by relation (3.67). By the change of variables
(3.77), this relation can be represented in the form

K±
I − i K±

II = ∓p
√

πl lim
η→±1

[√(
1 − η2

)|ω′(η)| ϕ(η)

ω′(η)

]
, (3.81)

where the lower signs correspond to the left crack tip (beginning), and the upper
signs correspond to the right crack tip (end).
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Note, two parameters p and l are distinguish here for convenience; these param-
eters have the dimension of stress and length respectively and will acquire concrete
values (content), depending on the mode of loading and the shape of the region in
the tasks discussed below.

3.4 System of Curvilinear Cracks in Elastic Plane. Singular
Integral Equations

Integral equations of themain boundary problems [53]. Assume that the isotropic
elastic plane referred to a Cartesian coordinate system xOy containsN smooth curvi-
linear cracks Ln (p = 1, 2, …, N) without common points (Fig. 3.5). Since relations
(3.26), (3.30), (3.38), and (3.42) are true not only for a single but also for a collection
of smooth contours, it is easy to see that the integral representations for the complex
potentials (3.45) and (3.49) and the integral equations (3.52) and (3.57) for the first
and second main problems remain true for a system of smooth curvilinear cracks Ln

(p = 1, 2, …, N) if L is regarded as a collection of the contours Ln, i.e., L = L1 + L2

+ … + LN . The additional conditions (3.54) and (3.58) should be written for each
contour Ln separately. Combining these conditions, we get

∫

Ln

Q(t)dt = − 2i

æ + 1

∫

Ln

q(t)dt = Xn + iYn
æ + 1

, n = 1, 2, . . . , N , (3.82)

where Xp and Yn are the projections of the principal vector of forces applied to the
crack Ln on the Ox- and Oy-axes, respectively.

Note that the integral equation (3.69) is also true for any system of cracks along the
same straight line. It follows from the form of this equation and formula (3.35) that
problems of this kind are reduced to the evaluation of the corresponding quadratures.

Fig. 3.5 System of
curvilinear cracks in elastic
plane
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In this case, the complex integral equation (3.69) splits into two identical real equa-
tions corresponding to symmetric and antisymmetric stress distributions.

As in the case of a single contour, the integral equations (3.52) and (3.57) for
the system of contours Ln (n = 1, 2, …, N) always possess solutions in the class of
functions unbounded at all ends of the contours Ln and this solution is unique in the
case where N conditions (3.82) are satisfied.

In what follows, we represent the integral expressions for the complex potentials
�(z) and �(z) and the integral equations of the main boundary problems for the infi-
nite plane weakened by a system of curvilinear cracks in a somewhat different form.
To do this we refer each contour Ln to a local coordinate system xpOpyp (Fig. 3.5).
In the principal Cartesian coordinate system xOy, the points Op are determined by
the complex coordinates z0n = x0n + iy0n , and the Opxp-axes make angles αp with the
Ox-axis. Then the relationship between the coordinates of points of the plane in the
local and principal coordinates is determined by the following relations:

z = zne
iαn + z0n; z = x + iy; zn = xn + iyn. (3.83)

Assume that the jumps of stresses and the derivatives of displacements

(Nn + iTn)
+ − (Nn + iTn)

− = 2qn(tn), tn ∈ Ln; (3.84)

d

dtn

[
(un + ivn)

+ − (un + ivn)
−] = i(1 + æ)

2G
g′
n(tn), tn ∈ Ln (3.85)

are specified on the crack Ln referred to the coordinate system xpOpyp. Moreover,
the jump of displacements at the ends of the crack and the stresses and rotations at
infinity are set equal to zero (here and in what follows, we use the same notation as
in Sect. 3.3; the subscript p indicates that the corresponding quantity is presented in
the local coordinates and corresponds to the contour Ln; in particular, tn stands for
the complex coordinate of a point of the contour Ln in the local coordinate system
xpOpyp).

According to relations (3.45) and (3.49), we have the following expressions for
the complex potentials:

�n(zn) = 1

2π

∫

Ln

Qn(tn)dtn
tn − zn

;

�n(zn) = 1

2π

∫

Ln

[
Qn(tn) − 2iqn(tn)

tn − zn
dtn − tnQn(tn)dtn

(tn − zn)
2

]

, (3.86)

where

Qn(tn) = g′
n(tn) − 2iqn(tn)

/
(æ + 1). (3.87)

In view of the linearity of the problem, the functions [49]
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�(z) = 1

2π

N∑

k=1

∫

Lk

Qk(tk)eiαk

Tk − z
dtk , Tk = tke

iαk + z0k;

�(z) = 1

2π

N∑

k=1

∫

Lk

[
Qk(tk) − 2iqk(tk)

Tk − z
e−iαk dtk − T̄k Qk(tk)

(Tk − z)2
eiαk dtk

]

, (3.88)

obtained as a result of superposition of the complex potentials (3.86) for isolated
cracks describe the stressed state of the elastic plane caused by the discontinuities
of displacements gk(tk) and stresses qk(tk) on the N contours Lk (k = 1, 2, …, N).
Indeed, the functions �n(zn) and �n(zn) (3.86) are single-valued everywhere except
the contour Ln, where they have discontinuities of displacements gn(tn) and stresses
qn(tn). This is why the fields of stresses and displacements caused by these functions
are continuous on the contours Lk (k = 1, 2, …, N; k 	= n). Thus, the sums of these
functions, i.e., the complex potentials (3.88), specify the solution of the problem
in the case where the discontinuities of displacements gk(tk) and stresses qk(tk) are
given on the N contours Lk (k = 1, 2, …, N).

By using representation (3.88), we construct the integral equations of the problem
for the case where, the stresses are given on some contours but displacements are
specified on the other contours. Let the crack faces Ln (p = 1, 2, …, t) be loaded
by nonself-balanced forces

N±
n (tn) + iT±

n (tn) = pn(tn) ± qn(tn), tn ∈ Ln; n = 1, 2, . . . , m (3.89)

and let the derivatives of displacements be specified on the other cracks Ln (p = t
+ 1, …, N):

2G
d

dtn

(
u±
n + iv±

n

) = f ′
n(tn) ∓ æ + 1

2i
g′
n(tn), tn ∈ Ln; n = m + 1, . . . , N .

(3.90)

Moreover, at infinity, the stresses and rotations are absent.
Satisfying the boundary conditions (3.89) and (3.90) with the help of potentials

(3.88) on each crack, for theN unknown functions g′
n(tn) (n = 1, 2,…,t) and qn(tn)

(n = t + 1, …, N), we get the following system of N singular integral equations
[52]:

1

π

N∑

k=1

[
Knk
(
tk, t

′
n

)
Qk(tk)dtk + Lnk

(
tk, t

′
n

)
Qk(tk) dtk + Mnk

(
tk, t

′
n

)
qk(tk)dtk

] =

=
{
pn
(
t ′n
)
, n = 1, 2, . . . , m;

− f ′
n

(
t ′n
)
, n = m + 1, . . . , N , t ′n ∈ Ln.

(3.91)

Here,
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Knk
(
tk, t

′
n

) = eiαk

2

(
1

Tk − T ′
n

+ e−2iαn

T̄k − T̄ ′
n

dt ′n
dt ′n

)

, n = 1, 2, . . . , m;

Knk
(
tk, t

′
n

) = eiαk

2

(

− æ

Tk − T ′
n

+ e−2iαn

T̄k − T̄ ′
n

dt ′n
dt ′n

)

, n = m + 1, . . . , N ;

Lnk
(
tk, t

′
n

) = e−iαk

2

(
1

T̄k − T̄ ′
n

− Tk − T ′
n

(
T̄k − T̄ ′

n
)2

dt ′n
dt ′n

e−2iαn

)

, n = 1, 2, . . . , N ;

Mnk
(
tk, t

′
n

) = iei(αk−2αn)

T̄k − T̄ ′
n

dt ′n
dt ′n

; T ′
n = t ′ne

iαn + z0n, n = 1, 2, . . . , N . (3.92)

The system of Eqs. (3.91) can be represented in the compact form as follows:

�
(
T ′
n

)+ �
(
T ′
n

)+ e−2iαn
dt ′n
dt ′n

[
T ′
n�

′(T ′
n

)+ �
(
T ′
n

)] = pn
(
t ′n
)
, t ′n ∈ Ln;

n = 1, 2, . . . , m; (3.93)

æ�
(
T ′
n

)− �
(
T ′
n

)− e−2iαn
dt ′n
dt ′n

[
T ′
n�

′(T ′
n

)+ �
(
T ′
n

)] = f ′
n

(
t ′n
)
, t ′n ∈ Ln;

n = m + 1, . . . , N , (3.94)

where �n(T’n) and �n(T’n) are the direct values of the complex potentials �(z) and
�(z), i.e., the values obtained by the direct substitution of z = T’n in the expressions
for �(z) and �(z).

The solution of system (3.91) must satisfy the conditions

∫

Ln

Qn(tn)dtn = − 2i

æ + 1

∫

Ln

qn(tn)dtn = Xn + iYn
æ + 1

e−iαn , n = 1, 2, . . . , N

(3.95)

guaranteeing the single-valuedness of displacements in traversing the contours Ln.
The integral equations (3.91) remain true in the case where the displacements and

the principal vector of total forces acting upon all indicated contours are given on
the contours Ln (p =t + 1, …, N). However, in this case, the additional conditions
(3.95) for p = t + 1, …, N should be replaced by different conditions [35, 37].
Equations (3.91) belong to the already analyzed type of singular integral equations
(but represented in a different form). Hence, if conditions (3.95) are satisfied, then
these equations always possess a unique solution in the class of functions unbounded
at all endpoints of the contours Lk .

System of rectilinear cracks arbitrarily located in the elastic plane [43–45].
Assume that the elastic isotropic plane referred to a Cartesian coordinate system xOy
contains N rectilinear cuts (cracks) of length 2lk (k = 1, 2, …, N). The centers of the
cracks Ok are specified by the coordinates z0k = x0k + iy0k . The origins of the local
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Fig. 3.6 System of
rectilinear cracks arbitrarily
located in the elastic plane

coordinate systems xkOkyk are located at the pointsOk . TheOkxk-axes coincide with
the crack lines and form angles αk with the Ox-axis (Fig. 3.6). The crack faces are
loaded by forces

σ±
k − iτ±

k = pk(xk) ± qk(xk), |xk | < lk, k = 1, 2, . . . , N , (3.96)

and at infinity the stresses are absent. It is necessary to determine the stress-strain
state of this domain. Here, σk and τk are the normal and tangential components of
stresses in the local coordinate system xkOkyk .

First, we consider the problemof determination of stresses in an unbounded elastic
plane containing a single crack |xk | ≤ lk, yk = 0. Assume that discontinuities of
displacements gk(xk) and stresses qk(xk) are specified on this crack. For the indicated
problem, by virtue of formula (3.86), the complex potentials �(zk) and �(zk) in the
coordinate system xkOk yk take the form

�(zk) = 1

2π

lk∫

−lk

Qk(t)dt

t − zk
;

�(zk) = 1

2π

lk∫

−lk

[
Qk(t) − 2iqk(t)

t − zk
− t Qk(t)

(t − zk)
2

]

dt, (3.97)

where

zk = xk + iyk; Qk(x) = g′
k(x) − i

2qk(x)

æ + 1
. (3.98)

In view of the linearity of the problem, the functions

�(z) = 1

2π

N∑

k=1

lk∫

−lk

Qk(t)dt

t − zk
;
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�(z) = 1

2π

N∑

k=1

e−2iαk

lk∫

−lk

[
Qk(t) − 2iqk(t)

t − zk
− T̄keiαk

(t − zk)
2 Qk(t)

]

dt;

Tk = teiαk + z0k; zk = e−iαk
(
z − z0k

)
, (3.99)

obtained by the superposition of the complex potentials (3.91) for isolated cracks
describe the stressed state of the elastic plane caused by the discontinuities of
displacements gk(xk) and stresses qk(xk) on N segments |xk | ≤ lk, yk =
0 (k = 1, 2, . . . , N ).

Indeed, the functions�(zk) and�(zk) (3.97) are single-valued everywhere except
the segment |xk | ≤ lk, yk = 0,, where they have discontinuities of displace-
ments gk(xk) and stresses qk(xk). This is why the fields of stresses and displace-
ments caused by these functions are continuous on the segments |xn| ≤ ln, yn =
0 (n = 1, 2, . . . , N , n 	= k). Thus, the sums of these functions, i.e., the complex
potentials (3.99), give the solution of the problem with discontinuities of displace-
ments gk(xk) and stresses qk(xk) given on the N segments |xk | ≤ lk, yk =
0 (k = 1, 2, . . . , N ).

We now pass to the solution of the problem of stress-strain state of an infinite
plane with loading (3.96) given on N cracks |xk | ≤ lk, yk = 0 (k = 1, 2, . . . , N )

in the absence of stresses at infinity. We seek the complex potentials for this prob-
lem in the form (3.99) under the assumption that, in this case, the discontinuities of
displacements gk(xk) are unknown functions. Since, in relation (3.99), the disconti-
nuities of stresses qk(xk) have already been taken into account, it remains to satisfy
the following conditions on the cracks:

σ+
n + σ−

n − i
(
τ+
n + τ−

n

) = 2pn(xn), |xn| < ln, n = 1, 2, . . . , N . (3.100)

By using the formulas of passing to the new coordinate system (3.11), we write
the complex potentials �n(zn) and �n(zn) of the analyzed problem in the coordinate
system xnOnyn as follows:

�n(zn) = 1

2π

N∑

k=1

lk∫

−lk

Qk(t)dt

t − zk
;

�n(zn) = 1

2π

N∑

k=1

e2iαnk

lk∫

−lk

[
Qk(t) − 2iqk(t)

t − zk
−
(
T̄k − z̄0n

)
eiαk

(t − zk)
2 Qk(t)

]

dt, (3.101)

where zk = e−iαk
(
zneiαn + z0n − z0k

)
and αnk = αn – αk .

We now find the stresses on the axes xn by using relations (3.4) and (3.5) and
substitute them in the boundary conditions (3.100). As a result, we arrive at the
system of N singular integral equations of the analyzed problem:
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N∑

k=1

lk∫

−lk

[
Qk(t)Knk(t, x) + Qk(t)Lnk(t, x) + iqk(t)

T̄k − X̄n
ei(αk − 2αn)

]
dt = πpn(x),

|x | < ln, n = 1, 2, . . . , N .

(3.102)

Here,

Knk(t, x) = eiαk

2

(
1

Tk − Xn
+ e−2iαn

T̄k − X̄n

)
;

Lnk(t, x) = e−iαk

2

(
1

T̄k − X̄n
− Tk − Xn
(
T̄k − X̄n

)2 e
−2iαn

)

;

Xn = xeiαn + z0n.

(3.103)

For the sake of convenience, here and in what follows, we omit the subscript in
xn.

Kernels (3.103) of the obtained system of equations are regular except the case
n = k when Knk(t, x) turns into a singular Cauchy kernel and Lnk(t, x) = 0. In this
case, system (3.102) can be represented in the form

ln∫

−ln

g′
n(t)dt

t − x
+
∑

k 	=n

lk∫

−lk

[
g′
k(t)Knk(t, x) + g′

k(t)Lnk(t, x)
]
dt =

= πpn(x) + 2i

æ + 1

N∑

k=1

lk∫

−lk

{
qk(t)

[
Knk(t, x) − æ + 1

2
(
T̄k − X̄n

)ei(αk − 2αn)
]

− qk(t)Lnk(t, x)

}
dt, |x | < ln, n = 1, 2, . . . , N ,

(3.104)

where
∑

k 	=n
denotes the sum

N∑

k=1
and, for k = n, the corresponding term is equal to

zero.
If a self-balanced load is applied to the crack faces, i.e., the boundary conditions

(3.96) on cracks take the form

σ+
k + iτ+

k = σ−
k + iτ−

k = pk(xk), |xk | < lk, k = 1, 2, . . . , N , (3.105)

then the system of integral equations is simplified, namely,

ln∫

−ln

g′
n(t)dt

t − x
+
∑

k 	=n

lk∫

−lk

[
g′
k(t)Knk(t, x) + g′

k(t)Lnk(t, x)
]
dt = πpn(x),

|x | < ln, n = 1, 2, . . . , N

. (3.106)
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The integral equations (3.104) and (3.106) differ solely by the known right-hand
sides. If we obtain the solution of system (3.106) under arbitrary loads pn(x), then we,
in fact, also determine the solution of system (3.104). This is why, in what follows,
we mainly consider the problems with self-balanced loads acting upon the cracks
(qk(xk) = 0) because this type of loading is used most extensively. In particular, the
problems in which the plane is loaded at infinity or at internal points are reduced to
the case of self-balanced loads. It should be emphasized that if we have the solution
of the problem in the case where concentrated forces act at the inner points of the
domain, then the solution of the problem in the case of concentrated forces applied
to a single face of the crack can be found by the limit transition. Thus, by using this
solution obtained for the self-balanced loads acting upon the cracks, we can construct
the fundamental solution of the problem for the general case of loading.

Note that singular integral equations for a system of arbitrarily located cracks
whose faces are subjected to the action of a self-balanced load (qn(xn) = 0) were
first deduced in [55] (see also [9–11]). The general case of loading was considered
in the monograph [44]. We can also mention that the integral equations (3.102) can
be obtained from Eqs. (3.91) under the assumption that rectilinear cracks are located
on the Onxn-axes. Thus, we arrive at the integral equations (3.102) given on the
rectilinear segments tn = xn.

3.5 Method of Mechanical Quadratures

The standard method aimed at the solution of singular integral equations is based
on their regularization with subsequent numerical solution of obtained Fredholm
integral equations of the second kind. However, this approach is quite cumbersome.
In recent years, the direct methods for the solution of singular integral equations
leading, without regularization, to the solution of systems of algebraic equations
are especially extensively used for the numerical analyses. Among these methods,
it is necessary to mention the method of mechanical quadratures based on certain
formulas for interpolating polynomials and the quadrature formulas for singular
integrals [4, 20, 28, 34, 60].

Numerical solution of singular integral equations. Consider a singular integral
equation:

1∫

−1

[
K (ξ, η) g′(ξ) + L(ξ, η)g′(ξ)

]
dξ = π P(η), |η| < 1, (3.107)

where

K (ξ, η) = 1

ξ − η
+ k(ξ, η). (3.108)
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The kernels k(ξ, η) and L(ξ, η) and the free term P(η) are continuous functions of
their arguments given on the segment [−1, 1]. The two-dimensional problems of the
theory of cracks are reduced to Eq. (3.107) (or a system of equations of this kind).
The solution of the integral equation (3.107) in the class of functions unbounded for
ξ = ±1, i.e., for

g′(ξ) = u(ξ)
√
1 − ξ 2

, (3.109)

where u(ξ) is a continuous function on the segment [−1, 1], and satisfying the
additional condition

1∫

−1

g′(ξ) dξ = B, (3.110)

where B is a known constant, exists and is unique [36].
The numerical solution of Eq. (3.107) is obtained by using the Gauss quadrature

formulas. For the singular integral, we get [4]

1∫

−1

u(ξ)dξ
√
1 − ξ 2(ξ − η)

= π

n

n∑

k=1

u(ξk)

ξk − η
+ πu(η)

Un−1(η)

Tn(η)
, (3.111)

whereTp(η)= cos(n arccosη) andUn–1(η)= sin(n arccosη)/
√
1 − η2 areChebyshev

polynomials of the first and second kinds and the nodes ξk , which are the zeros of
the polynomial Tp(ξ), are given by the formula

ξk = cos
2k − 1

2n
π, k = 1, 2, . . . , n. (3.112)

At the points

ηm = cos
πm

n
, m = 1, 2, . . . , n − 1, (3.113)

as the roots of the equation Un–1(η) = 0, the quadrature formula (3.111) takes a
simpler form

1∫

−1

u(ξ)dξ
√
1 − ξ 2(ξ − ηm)

= π

n

n∑

k=1

u(ξk)

ξk − ηm
. (3.114)

The ordinary Gauss quadrature formula for function (3.110) has the form [38]
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1∫

−1

u(ξ)dξ
√
1 − ξ 2

= π

n

n∑

k=1

u(ξk). (3.115)

Thus, formula (3.114) for a singular integral with Cauchy kernel valid in the
discrete set of points η = ηm (3.113), coincides with the ordinary quadrature formula
(3.115). Relations (3.111) and (3.115) are exact if u(ξ) is a polynomial of degree not
greater than 2n and 2n – 1, respectively.

We now apply the quadrature formulas (3.114) and (3.115) to Eq. (3.107) and
integral (3.110). As a result, we arrive at a system of p linear algebraic equations

1

n

n∑

k=1

[
K (ξk, ηm) u(ξk) + L(ξk, ηm)u(ξk)

] = P(ηm), m = 1, 2, . . . , n − 1

π

n

n∑

k=1

u(ξk) = B

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.116)

for the p unknown quantities u(ξk) (k = 1, 2, …, n).
The systemof algebraic equations (3.116),which is a discrete analogof the integral

equation (3.107) and condition (3.110) was deduced for the first time in [20].
By using the Lagrange interpolating polynomial for the required function u(ξ) at

nodes (3.112) (see [38], p. 527)

u(ξ) = 1

n

n∑

k=1

(−1)k+1u(ξk)
Tn(ξ)

√
1 − ξ 2

k

ξ − ξk
, (3.117)

we find the values of the function u(ξ) at the points ξ = ±1

u(1) = −1

n

n∑

k=1

(−1)ku(ξk)ctg
2k − 1

4n
π;

u(−1) = 1

n

n∑

k=1

(−1)k+nu(ξk)tg
2k − 1

4n
π,

(3.118)

Note that the stress intensity factors are expressed via these quantities [see relation
(3.81)];

K±
I − i K±

II = ∓p
√

πl
√|ω′(±1)| u(±1)

ω′(±1)
= p

√
πl
(
F±
I − i F±

II

); (3.119)

here F±
I , F±

II are nondimensional (relative) SIF.
Thus, for the singular integral equation (3.107) or a system of equations of this

kind (the generalization of the presented results to the system of integral equations is
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obvious), one can easily construct the corresponding system of linear algebraic equa-
tions (3.116) and, on the basis of its solution, the numerical (approximate) solution
of the initial equation (3.107) can be found by interpolation. Note that the conver-
gence of the process for smooth functions k(ξ, η), L(ξ, η), and P(η) follows from
the convergence of the quadrature formulas (3.114) and (3.115) and the uniqueness
of the solution of Eq. (3.107) under condition (3.110). The high efficiency of the
proposed method is demonstrated by specific examples.

3.6 System of Curvilinear Cracks in Elastic Half-Plane.
Singular Integral Equations (Crack Faces Are Not
in Contact)

Some model contact loads. The processes of sliding and rolling take place in all
contact zones in the units ofmachines andmechanisms. In this case, in the nearsurface
areas of the elements of these units, parallel with other defects, we observe the
initiation of cracks leading either to the degradation of the contact surface or to the
development of the main crack and complete loss of the serviceability of joints.
This is especially well visible [30, 47, 59, 63] for the forms of contact interaction
accompanied by high levels of friction, namely, fretting fatigue, rolling under the
conditions of dry friction, friction fatigue, etc.

As a rule, elements of tribojoints damaged by cracks are characterized by the
formation of complex stressed state, and the solution of the problems of its determi-
nation encounters significant mathematical difficulties. Hence, in the construction
of two-dimensional models, it is reasonable to use certain simplifications. Thus, in
two-dimensional models, the damaged body is modeled by an elastic half-plane with
cracks and the action of counterbody is replaced by the action of normal p(x) and
tangential q(x) forces distributed in certain way over the boundary of the half-plane
(Fig. 3.7). These forces reflect the shape and sizes of the counterbody, the type of the
contact interaction, the mechanical characteristics of materials and contact surfaces,
etc. In Fig. 3.8, some most extensively used schemes of model contact loadings are
shown. In Fig. 3.8a–d, the tangential and normal forces obey the Coulomb-Amonton
law with a friction coefficient f: q(x) = fp(x). This enables us to model the condi-
tions of slip between bodies. According to Fig. 3.8e, f, the normal forces p(x) are
distributed according to the elliptic (Hertz) law, whereas the tangential forces q(x)
have a more complicated structure (this is discussed in what follows). These schemes
enable us to model the conditions under which the contact zone of the bodies con-
tains both the regions of slip and sticking (see, e.g., [26]). The specific feature of
the scheme depicted in Fig. 3.8d is that this scheme enables one to take into account
the presence of the line (or band for cylindrical bodies) of previous contact and the
shape of the edges of the counterbody (degree of rounding) (see [1]). It is clear that,
parallel with contact loads, the elements of units are often subjected to the action of
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Fig. 3.7 General scheme of the problem

Fig. 3.8 Most extensively used schemes of model contact loading

nominal bearing tensile, compression, bending, and other loads (see Fig. 3.8b, d),
which should also be taken into account.

As already indicated, the problem of finding the stress intensity factors and other
parameters of fracture mechanics in a half-plane with cracks subjected to the action
of model contact loads is one of the most important problems in the evaluation of
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lifetime. The solutions of problems of this kind were analyzed in Chap. 1 and the
surveys of the accumulated results can be also found in [15, 17, 19, 24, 29, 30, 42, 48].
Note that, in the literature, the cases where the half-plane contains a crack perpen-
dicular to its boundary and subjected to the action of a concentrated force, constant
pressure, or elliptic loading on this boundary, have been extensively investigated
(Fig. 3.8a–c). The number of investigations devoted to the case of inclined crack is
smaller and the number works dealing with curvilinear cracks is even smaller. The
data on the SIF for the last three loading schemes are practically absent (Fig. 3.8d–f).

In the present section, by using the relations of the main problems of the plane
theory of elasticity for a continuous half-plane [37] and the Muskhelishvili complex
potentials for a half-plane weakened by a system of arbitrarily located rectilinear
[44] or curvilinear [53] cracks, we construct singular integral equations for a half-
plane weakened by a system of curvilinear cracks subjected to the action of model
contact loads applied to the boundary of the half-plane. In particular, we deduce
singular integral equations for numerous important cases used in Chaps. 4 and 5 to
construct the paths of crack propagation under the action of cyclic contact loads. We
also present numerous examples of evaluation of the stress intensity factors (SIF) for
curvilinear and rectilinear cracks in the half-plane.

Main problems of the theory of elasticity for a half-plane. Assume that the
infinite plane contains a cut L covering the entire real axis Ox. Suppose that the
stresses are continuous in passing through the contour L,, i.e.,

σ±
y − iτ±

xy = p(x), |x | < ∞, (3.120)

whereas the displacements have a jump g(x) (3.51). We also assume that the stresses
p(x) on L are known and the function p(x) belongs to the class H and has the order
o(1/x) for large |x |. Thus, in view of Eq. (3.52), we arrive at a singular integral
equation of the first main problem for the half-plane [44]

∞∫

−∞

g′(t)dt
t − x

= πp(x), |x | < ∞. (3.121)

The solution of Eq. (3.121) is given by the Hilbert representation (see [2], p. 171)
as follows:

g′(x) = − 1

π

∞∫

−∞

p(t)dt

t − x
. (3.122)

If the function g′(x) is known, then the complex stress potentials of are given by
the following formulas:

�(z) = 1

2π

∞∫

−∞

g′(t)dt
t − z

; �(z) = 1

2π

∞∫

−∞

[
g′(t)
t − z

− tg′(t)
(t − z)2

]

dt. (3.123)
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Suppose that a body occupies the lower half-plane (y ≤ 0). Substituting solution
(3.122) in (3.123), changing the order of integration, and taking the integrals, we get

�(z) = − 1

2π i

∞∫

−∞

p(t)dt

t − z
; �(z) = − 1

2π i

∞∫

−∞

[
p(t)

t − z
− tp(t)

(t − z)2

]

dt.

(3.124)

This result coincides with the well-known solution of the first main problem of
the theory of elasticity for the half-plane (see [37], p. 408).

Consider the second main problem for the case where the displacements are
specified on the edge of the half-plane. Assume that the displacements are continuous
in passing through the contour L (|x | < ∞, y = 0) in the infinite plane, i.e.,

2G
d

dx

(
u± + iv±) = f ′(x), |x | < ∞, (3.125)

and that the stresses have a discontinuity q(x) (3.50). If the function f ’(x) is known,
then equality (3.57) yields the following singular integral equation:

2æ

æ + 1

∞∫

−∞

q(t)

t − x
dt = π i f ′(x), |x | < ∞, (3.126)

Here, the function f′(x) belongs to the class H and, for large |x | , has the order
o(1/x). The solution of Eq. (3.126) takes the form

q(x) = æ + 1

2æ

1

π i

∞∫

−∞

f ′(t)dt
t − x

, |x | < ∞. (3.127)

Then the complex stress potentials of are given by relations (3.45) and (3.49). In
the analyzed case, these relations take the form

�(z) = 1

π i(æ + 1)

∞∫

−∞

q(t)dt

t − z
; �(z) = 1

π i(æ + 1)

∞∫

−∞

[
æq(t)

t − z
− tq(t)

(t − z)2

]

dt.

(3.128)

By using relations (3.127) and (3.128), we find the solution of the second main
problem for the lower half-plane:

�(z) = − 1

2π iæ

∞∫

−∞

f ′(t)dt
t − z

; �(z) = 1

2π iæ

∞∫

−∞

[
æ f ′(t)
t − z

+ t f ′(t)
(t − z)2

]

dt,

(3.129)
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which coincides with the well-known result (see [37], p. 409).
Complex potentials for a system of curvilinear cracks in the half-plane. Con-

sider an infinite elastic plane containing N + 1 cracks (cuts) Ln (n = 0, 1, …, N)
referred to a local coordinate system xnOnyn (see Fig. 3.7). Assume that the contour
L0 is coincides with the real axis Ox. We also assume that the local coordinate sys-
tem x0O0y0 of the contour L0 coincides with the principal coordinate system xOy
(α0 = 0, z00= 0) and the other cracks are located in the lower half-plane (y < 0). A
self-balanced load p0(x) (q0(x) = 0) is specified on the contour L0 and the jumps of
displacements gn(tn) and stresses qn(tn) (n = 1, 2, …, N) are specified on the other
contours. For the considered problem, the complex potentials �1(z) and �1(z) have
the form

�1(z) = 1

2π

∞∫

−∞

g′
0(t)dt

t − z
+ �(z);

�1(z) = 1

2π

∞∫

−∞

[
g′
0(t)

t − z
− tg′

0(t)

(t − z)2

]

dt + �(z),

(3.130)

where the functions �(z) and �(z) are given by relations (3.88). To determine the
unknown function g′

0(x), we use Eq. (3.121) in which

p(x) = p0(x) − 1

2π

N∑

k=1

∫

Lk

{[
Qk(tk)

Tk − x
+ Qk(tk) + 2iqk(tk)

T̄k − x

]
eiαk dtk+

+
[

1

T̄k − x
− Tk − x
(
T̄k − x

)2

]

Qk(tk) e
−iαk dtk

}

; ImTk < 0. (3.131)

Thus, by virtue of relations (3.124), (3.130), and (3.131), we find [52]

�1(z) = �(z) + �0(z)

+ 1

2π

N∑

k=1

∫

Lk

[
Qk(tk) + 2iqk(tk)

T̄k − z
eiαk dtk+ Tk − T̄k

(
T̄k − z

)2 Qk(tk) e
−iαk dtk

]

;

�1(z) = �(z) + �0(z)

+ 1

2π

N∑

k=1

∫

Lk

{
Qk(tk) + 2iqk(tk)
(
T̄k − z

)2 T̄ke
iαk dtk+

+
[(

T̄k − Tk
)(
T̄k + z

)

(
T̄k − z

)3 − 1

T̄k − z

]

Qk(tk) e
−iαk dtk

]

,

(3.132)
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where the functions �0(z) and�0(z) specify the solution for a continuous half-plane
and the forces p0(x) given on the boundary

�0(z) = − 1

2π i

∞∫

−∞

p0(t)dt

t − z
; �0(z) = − 1

2π i

∞∫

−∞

[
p0(t)

t − z
− tp0(t)

(t − z)2

]

dt .

(3.133)

In a similar way, we obtain the integral representation for the potentials�1(z) and
�1(z):

�1(z) = �(z) + �0(z)

+ 1

2πæ

N∑

k=1

∫

Lk

[
Qk(tk) + 2iqk(tk)

T̄k − z
eiαk dtk − Tk − T̄k

(
T̄k − z

)2 Qk(tk)e
−iαk dtk

]
;

�1(z) = �(z)

+�0(z) + 1

2πæ

N∑

k=1

∫

Lk

{[
æ2

T̄k − z
+
(
Tk − T̄k

)(
T̄k + z

)

(
T̄k − z

)3

]

×

×Qk(tk) e
−iαk dtk − Qk(tk) + 2iqk(tk)

(
T̄k − z

)2 T̄ke
iαk dtk

]

.

(3.134)

in the case where displacements are given on the edge of the half-plane. Here, �0(z)
and �0(z) specify the solution of the problem for a continuous half-plane with dis-
placements f 0(x) given on its edge

�0(z) = − 1

2π iæ

∞∫

−∞

f ′
0(t)dt

t − z
; �0(z) = 1

2π iæ

∞∫

−∞

[
æ f ′

0(t)

t − z
+ t f ′

0(t)

(t − z)2

]

dt

(3.135)

and the functions �(z) and �(z) are given by relations (3.88).
Singular integral equations for curvilinear cracks in a half-plane [8]. Assume

that a semi-infinite elastic isotropic plane occupying the lower part of the plane xOy
(y ≤ 0) contain N smooth curvilinear cracks (cuts) Ln (n = 1, …, N) (Fig. 3.7). We
refer the contours of the cracks Ln to local coordinate systems xnOnyn connected
with the principal coordinate system xOy by the formula z = zneiαn + z0n (z0n is a
complex coordinate of the point On in the principal coordinate system and αn is the
angle of inclination of the axis Onxn to Ox, zn = xn + iyn).

The faces of the cracks are subjected to the action of nonself-balanced forces

N±
n (tn) + iT±

n (tn) = pn(tn) ± qn(tn), tn ∈ Ln, n = 1, . . . , N , (3.136)
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and the loads p0(x) are applied to the edge of the half-plane. The functions pn(tn),
qn(tn), and p0(x) belong to the class H.

Assume that the cracks faces are not in contact. This enables to represent the
complex stress potentials of the problem in the form (3.132). Note that if the plate
at the inner points and at infinity is subjected to the action of finitely many force
factors Sj (j = 1, 2, …), then, in (3.132), it is necessary to add the complex potentials
�s

0(z) and �s
0(z) corresponding to the stress-strain state of the half-plane without

cracks under the action of these factors. In the case where the half-plane is stretched
at infinity by constant forces of intensity p parallel to the half-plane boundary, the
complex potentials take the form [37].

�s
0(z) = p

4
; �s

0(z) = − p

2

Satisfying the boundary conditions (3.136) on each cut with the help of potentials
(3.132), we reduce the problem to N singular integral equations for the unknown
functions g′

n(tn) (n = 1, …, N):

N∑

k=1

∫

Lk

[
Rnk
(
tk, t ′n

)
Qk(tk)dtk + Snk

(
tk, t ′n

)
Qk(tk)dt̄k + Enk

(
tk, t ′n

)
qk(tk)dtk+

+Fnk
(
tk, t ′n

)
qk(tk)dt̄k

]+ G
(
t ′n
) = πp∗

n

(
t ′n
)
, t ′n ∈ Ln, n = 1, . . . , N ,

(3.137)

where

Rnk
(
tk, t

′
n

) = Knk
(
tk, t

′
n

)+ eiαk

2

{
1

T ′
n − T̄k

+ T̄k − Tk
(
T ′
n − T̄k

)2 +

+
[

1

T̄ ′
n − Tk

+ T̄k − Tk
(
T̄ ′

n − Tk
)2 + 2

(
Tk − T̄k

)(
T ′
n − T̄k

)

(
T̄ ′

n − Tk
)3

]
dt̄ ′n
dt ′n

e−2iαn

}

;

Snk
(
tk, t

′
n

) = Lnk
(
tk, t

′
n

)

+ e−iαk

2

[
1

T̄ ′
n − Tk

+ Tk − T̄k
(
T̄ ′

n − Tk
)2 − T ′

n − Tk
(
T̄ ′

n − Tk
)2

dt̄ ′n
dt ′n

e−2iαn

]

;

Enk
(
tk, t

′
n

) = Mnk
(
tk, t

′
n

)+ ieiαk

T ′
n − T̄k

;

Fnk
(
tk, t

′
n

) = ie−iαk

[
T ′
n − Tk

(
T̄ ′

n − Tk
)2

dt̄ ′n
dt ′n

e−2iαn − 1

T̄ ′
n − Tk

]

;

G
(
t ′n
) = 1

2i

∞∫

−∞

{
p0(t)

t − T̄ ′
n

− p0(t)

t − T̄ ′
n
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+
[

p0(t)

t − T̄ ′
n

− t − T ′
n

(
t − T̄ ′

n
)2 p0(t)

]
dt̄ ′n
dt ′n

e−2iαn

}

dt;

Knk
(
tk, t

′
n

) = eiαk

2

(
1

Tk − T ′
n

+ e−2iαn

T̄k − T̄ ′
n

dt̄ ′n
dt ′n

)
;

Lnk
(
tk, t

′
n

) = e−iαk

2

[
1

T̄k − T̄ ′
n

− Tk − T ′
n

(
T̄k − T̄ ′

n
)2

dt̄ ′n
dt ′n

e−2iαn

]

;

Mnk
(
tk, t

′
n

) = iei(αk−2αn)

T̄k − T̄ ′
n

dt̄ ′n
dt ′n

;

T ′
n = t ′ne

iαn + z0n p∗
n

(
t ′n
) = pn

(
t ′n
)+ psn

(
t ′n
)
.

The expressions Knk
(
tk, t ′n

)
, Lnk

(
tk, t ′n

)
, and Mnk

(
tk, t ′n

)
coincide with the kernels

of the singular integral equations for an infinite planewith curvilinear cracks [53] and
the other components of the kernels in system (3.137) and the termG

(
t ′n
)
characterize

the influence of the edge of the half-plane. The functions psn
(
t ′n
)
are determined by

the force factors Sj.
The solution of system (3.137) must satisfy the conditions

∫

Ln

g′
n(tn)dtn = 0, n = 1, . . . , N , (3.138)

guaranteeing the single-valuedness of displacements in traversing the contours Ln.
We establish the functions g′

n(tn) from the system of equations (3.137) and sub-
stitute them in relations (3.132). This gives the solution of the posed problem.

We also write the SIE (3.137) in the normalized form for a simpler case, which
is used in what follow for specific calculations. Assume that an arbitrary model load
acts upon the edge of the half-plane and corresponds to the following boundary
conditions:

σy(x) − iτxy(x) = −p (x ) − iq(x), |x − x0| ≤ a, y = 0;
σy(x) − iτxy(x) = 0, |x − x0| > a, y = 0 . (3.139)

The crack faces are not in contact. They are loaded by the self-balanced forces
pn(tn), i.e.,

N±
n (tn) + iT±

n (tn) = pn(tn), tn ∈ Ln, n = 1, . . . , N . (3.140)

The corresponding system of singular integral equations (SIE) of the problem in
the normalized form can be written as follows:
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N∑

k=1

1∫

−1

[
Rnk(ξ , η) ϕk(ξ) + Snk(ξ, η) ϕk(ξ)

]
dξ

= π Pn(η), |η| < 1, n = 1, . . . , N ,

(3.141)

where ϕn(ξ) = g′
n(t) ω′

n(ξ), and tn = lnωn(ξ) (−1≤ ξ ≤ 1) are parametric equations
of the crack contours.

The kernels Rnk(ξ, η) and Snk(ξ, η) of the SIE (3.141) have the form

Rnk(ξ , η) = Knk(ξ , η) + eiαk

2

{
1

T ′
n − T̄k

+ T̄k − Tk
(
T̄ ′
n − Tk

) 2 +

+
[

1

T̄ ′
n − Tk

+ T̄k − Tk
(
T̄ ′
n − Tn

) 2 + 2

(
Tk − T̄k

) (
T ′
n − Tk

)

(
T̄ ′
n − Tk

) 3

]
ω′
n(η)

ω′
n(η)

e−2iαn

}

;

Snk(ξ , η) = Lnk(ξ , η)

+ e−iαk

2

[
1

T̄ ′
n − Tk

+ Tk − T̄k
(
T̄ ′

n − T̄ ′
k

) 2 − T ′
n − Tk

(
T̄ ′

n − Tk
) 2 · ω′

n(η)

ω′
n(η)

e−2iαn

]

;

Knk(ξ , η) = eiαk

2

(
1

Tk − T ′
n

+ e−2iαn

T̄k − T̄ ′
n

· ω′
n(η)

ω′
n(η)

)

; (3.142)

Lnk(ξ , η) = e−iαk

2

(
1

T̄k − T̄ ′
n

− Tk − T ′
n

(
T̄k − T̄ ′

n

) 2 · ω′
n(η)

ω′
n(η)

e−2iαn

)

;

Tk = ωk(ξ) eiαk + z0k; T ′
n = ωn(η) eiαn + z0n;

Pn(η) are known functions determined by the loads on the edge of the half-plane,
on the crack faces, and at infinity, z0n are the complex coordinates of the origins of
local coordinate systems xnOnyn in the principal coordinate system xOy.

The solution of the system of SIE (3.141) must satisfy the additional conditions

1∫

−1

ϕn(ξ)dξ = 0, n = 1, . . . , N , (3.143)

guaranteeing the single-valuedness of displacements in traversing the N contours of
internal cracks.

The obtained system of the singular integral equations (3.142), (3.143) can be
efficiently solved by the Gauss-Chebyshev method of mechanical quadratures (see
Sect. 3.5). To realize this method, the unknown functions ϕn(η) are represented in
the form

ϕn (η) = un(η)
/√

1 − η2, n = 1 , . . . , N , (3.144)

where in(η) are functions continuous on the segment [−1; 1].
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Applying the Gauss quadrature formulas (3.111), (3.114), and (3.115) to the SIE
(3.141) and relations (3.143), we reduce the problem to the solution of the following
system of linear algebraic equations:

N∑

k=1

M∑

j=1

[
Rnk
(
ξ j , ηm

)
uk
(
ξ j
)+ Snk

(
ξ j , ηm

)
uk
(
ξ j
)] = MPn(ηm) ,

M∑

j=1

un
(
ξ j
) = 0 , n = 1 , . . . , N , m = 1 , . . . , M − 1, (3.145)

where ξ j = cos [(2 j − 1) π/(2M)] , j = 1 , . . . , M; ηm = cos
(
πm
/
M
)
, m =

1 , . . . , M − 1—are the roots of the Chebyshev polynomials of the first and second
kinds, respectively.

By using the solution of system (3.145), we determine the stress intensity factors
at the cracks tips by the following formula:

K±
In − i K±

IIn = ∓p
√

πl
√∣∣ω′

n(±1)
∣∣ un(±1)

ω′
n(±1)

, n = 1 , . . . , N . (3.146)

In general, in the presence of Ñ (Ñ ≤ N ) edge cracks, in the numerical solution
of the system of SIE (3.137) or (3.141), instead of the additional condition (3.138),
we introduce the following conditions:

un(−1) = 0, n = 1 , . . . , Ñ , (3.147)

decreasing the square-root singularity of the unknown function ϕn(η) at the points
where the cracks appear on the edge of the half-plane.

Singular integral equations for a system of rectilinear cracks in the half-
plane. We obtain singular integral equations for a half-plane weakened by a system
of arbitrarily located rectilinear cracks (Fig. 3.9) as a partial case of the SIE (3.137).
Note that these equations were obtained in [11, 54] by the same method as the SIE
(3.137) obtained for curvilinear cracks. In the case where the edge of the half-plane
(p0(x) = 0) is free of loads and self-balanced loads are given on the faces of the
rectilinear cracks

N±
k (xk) + iT±

k (xk) = pk(xk), |xk | ≤ lk, k = 1, 2, . . . , N , (3.148)

the system of SIE takes the form

ln∫

−ln

g′
n(t)dt

t − x
+

N∑

k=1

lk∫

−lk

[
g′
k(t)Rnk(t, x) + g′

k(t)Snk(t, x)
]
dt = πpn(x),

| x | < ln, n = 1, 2, . . . , N . (3.149)
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Fig. 3.9 Scheme of location
of rectilinear cracks in the
half-plane

Here,

Rnk(t, x) = (1 − δnk)Knk(t, x) + eiαk

2

{
1

Xn − T̄k
+ e−2iαn

X̄n − Tk
+

+ (T̄k − Tk
)
[
1 + e−2iαn

(
X̄n − Tk

)2 − 2e−2iαn (Xn − Tk)
(
X̄n − Tk

)3

]}

;

Snk(t, x) = (1 − δnk)Lnk(t, x)

+ e−iαk

2

[
Tk − T̄k
(
Xn − T̄k

)2 + 1

X̄n − Tk
− e−2iαn

Xn − Tk
(
X̄n − Tk

)2

]

, (3.150)

where

δnk =
{
0 for n 	= k;
1 for n = k.

The functions Knk(t, x) and Lnk(t, x) coincide with kernels (3.103) of the system
of equations for the infinite plane with cracks. It is obvious that the other components
in (3.150) characterize the influence of the free edge of the half-plane.

3.7 Singular Integral Equation for Single Curvilinear
Crack in Elastic Half-Plane

The case of single curvilinear crack in a half-plane is of significant practical impor-
tance. We now consider this case. We refer the half-plane to the principal coordinate
system xOy and the contour of the crack L to a local coordinate system x1O1y1
(Fig. 3.10). The system x1O1y1 is connected with the system xOy by the formula
z = z1eiα + z01, where z1 = x1 + iy1 is the complex variable, z01 the affix of the
point O1 in the system xOy, and α is the angle of inclination of the O1x1-axis to the
Ox-axis. The shape of the contour L in the coordinate system x1O1y1 is described by
the following parametric equation:
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Fig. 3.10 General schemes of the problem; a internal (subsurface) crack; b edge crack

t = x1(ξ) + iy1(ξ) = lω(ξ) = w(ξ), t ∈ L , |ξ | ≤ 1. (3.151)

The boundary conditions of the problem are formulated as follows: In a segment of
the boundary of the half-plane of length 2a, we specify an arbitrary normal pressure
p(x) and tangential forces q(x) such that

N (x ) + iT (x ) = −p (x ) − iq(x), |x − x0| ≤ a, y = 0;
N (x ) + iT (x ) = 0, |x − x0| > a, y = 0; (3.152)

here, N(x) and T (x) are, respectively, the normal and tangential components of the
external forces acting on the boundary of the half-plane (y = 0) and x0 is the abscissa
of the middle of the segment of action of the external load. We also assume that a
complex self-balanced load acts on the faces of the crack, i.e.,

N±(t ) + iT±(t ) = p1 (t ) , t ∈ L . (3.153)

In relation (3.153), the superscripts “+” and “−” correspond to the limiting values
of stresses on the crack faces on approaching the crack contour L from the left and
from the right, respectively.

In view of relations (3.132), the Kolosov-Muskhelishvili complex potentials of
the posed problem have the form

�(z) = 1

2π

∫

L

{[
1

T − z
− 1

T̄ − z

]
eiα g′(t) dt + T − T̄

(
T̄ − z

)2 e
−iα g′(t) dt̄

}

+�0(z);
�(z ) = 1

2π

∫

L

{[
1

(
T − z

)2 − 1

(T − z )2

]

T ei α g′(t ) dt+

+
[

1

T − z
− 1

T − z
+
(
T − T

)(
T + z

)

(
T − z

)3

]

e−i αg′(t ) dt
}+ �0(z ) ;

T = te i α + z01;
(3.154)
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where g′(t) is an unknown density of potentials, which expresses the derivative of
the jump of displacements along the crack contour. The functions �0(z) and �0(z)
determine the stressed state of the half-plane without cracks under the action of a
certainmodel contact load (3.152) on the edge of the half-plane and a possible normal
load at infinity (tension, bending, etc.).

Satisfying the boundary condition (3.153) with the help of potentials (3.154), we
arrive at a singular integral equation [6, 8, 42] for the function g′(t), which can be
represented in the normalized form as follows:

1∫

−1

[R (ξ, η) ϕ(ξ) + S (ξ, η) ϕ (ξ)] d ξ = π P (η), |η| < 1, (3.155)

where

R(ξ , η) = Re

[
w′(η)

w (ξ) − w (η)
+ w′(η)

W (ξ , η)

]

+

+1

2

W (ξ , ξ)

W 2(ξ , η)

[
w′(η) + w′ (η) e2iα + 2e2i α w′(η)

w (ξ) − w (η )

W (ξ , η)
;

S (ξ, η) = −1

2

∂

∂η

w(ξ) − w(η)

w(ξ) − w(η)
+

+w′(η)

2

[
W−1(ξ, η) + w(ξ) − w(η)

W 2(ξ , η)

w′(η)

w′(η)
+ e−2i α W (ξ , ξ)

W
2
(ξ , η)

]

;

W (ξ, η) = w (η) − w (ξ)e2iα − 2ieiαIm z01 ; ϕ(ξ) = g′ (t)w′ (ξ) ;

(3.156)

P(η) = P0 (η) + P1 (η) = [p0(t ) + p1(t )]w
′(η) ;

p0(t ) = −�0(t ) − �0(t ) −
[
t�′

0(t ) + �0(t )
]dt
dt

. (3.157)

If, e.g., the plane is subjected to tension by uniformly distributed forces σ∞
x = σ

at infinity, then we observe the appearance the following component of the function
P0(η):

P∞
0 (η) = σ

[
w̄′(η)e−2 i α − w′(η)

] /
2. (3.158)

We determine this term by using the second relation in (3.157) and the known
Kolosov-Muskhelishvili complex potentials �0(z) and �0(z) for the case of tension
of the half-plane without cracks at infinity [37].

Since, in what follows, the integral equation (3.155) is solved by the Gauss-
Chebyshev method of mechanical quadratures, we represent, as earlier, the unknown
function in the form

ϕ (η) = u (η)
√

1 − η2
. (3.159)
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In the case of internal crack, we supplement the SIE (3.155)with condition (3.143)
by settingp= 1. This guarantees the single-valuedness of displacements in traversing
the crack contour. By using the quadrature formulas,we arrive at a systemof algebraic
equations of type (3.116), where B = 0. Solving this system, we compute the SIF
with the help of relation (3.119).

In the case of edge crack, since the singularity of stresses at the point η = −1 is
not a square-root singularity, we assume [44, 53] that u(η) is a function continuous
on the segment [−1; 1] and satisfies the additional condition

u(−1) = 0 (3.160)

guaranteeing the boundedness of the solution at the point η = −1, where the crack
appears on the boundary of the half-plane.Applying theGauss quadrature formulas to
Eq. (3.155), representing the function u(η) via the Lagrange interpolating polynomial
at the Chebyshev nodes, and using Eq. (3.155) and condition (3.160) we arrive at the
following system of M linear algebraic equations for M the unknowns u(ξk)

M∑

k=1

[
R
(
ξk,ηm

)
u (ξk) + S

(
ξk,ηm

)
u (ξk)

] = MP(ηm), m = 1, . . . , M − 1;
M∑

k=1

[
(−1 )k tg

(
2k − 1

4M
π

)
u (ξk)

]
= 0,

,

(3.161)

where ξk = cos [(2k − 1)π/(2M)], ηm = cos (πm/M) are the roots of Cheby-
shev polynomials of the first and second kinds, respectively. With the help of the
solution of system (3.161) and the formulas (3.118) i (3.119) we determine the stress
intensity factors K I and K II at the tip of an edge curvilinear crack.

KI − i KII = p
√

πl|ω′(1)|
Mω′(1)

M∑

k=1

[
(−1 )kctg

(
2k − 1

4M
π

)
u (ξk)

]
. (3.162)

3.8 Stress Intensity Factors for Curvilinear Cracks
(Internal and Edge) in Half-Plane

Internal cracks. On the basis of the numerical solution of the SIE (3.141), for N =
1 or (3.155), the problem of stress intensity factors at the tips of a curvilinear crack
located along an arc of a circle parabola, or semiellipse was solved in the following
cases [8]: stretching of a half-plane in the direction parallel to theOx-axis by constant
forces σ∞

x = p at infinity (Fig. 3.11) and under a constant pressure normal to the
crack faces N±

1 (t1) = p1(t) = −p.
The parametric equations of the crack contour were as follows [53]:
w(ξ) = l(ξ − iε)/(1−iεξ) for a circular arc;
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Fig. 3.11 Scheme of
location of a curvilinear
crack in the half-plane

Fig. 3.12 Dependences of the stress intensity factors for a crack made along the circle on the angle
of its orientation in the half-plane stretched at infinity. The solid curves correspond to the right tip
of the crack (“+”), while the dashed curves correspond to its left tip (“–”). (1) λ = l/h = 0.7, ε =
δ/l = 0.5; (2) λ = 0, ε = 0.5; (3) λ = 0.7, ε = 1.0; (4) λ = 0, ε = 1.0

w(ξ) = l[ξ + iε(ξ 2 − 1)] for a parabolic arc;
w(ξ) = l[2ξ − iε(1 − ξ 2)]/(1 + ξ 2

)
for a semiellipse;

here, ε = δ/l is a dimensionless parameter, 2l – distance between tips of curvilinear
crack; and z01= ih (Fig. 3.11). The parameterλ= l/h specifies the location of the crack
relative to the edge of the half-plane. In the case of uniaxial tension of a half-plane
weakened by a crack, the function P(η) in Eq. (3.155) has the following structure:
P(η) = −p

[
w′(η) − w′(η)e−2iα

] /
2. At the same time, under the action of pressure

upon the crack faces, it has the following structure: P(η) = –pw′(η).
By analyzing the numerical data for the case of symmetric location of the crack (α

= 0 and α = π) (see Table 3.1), we arrive at the conclusion that, for α = 0, the stress
intensity factorK1 always increases as the crack approaches the edge. This regularity
is violated only for a crack made along a circle in the case where p1(t) = –p and ε =
δ/l > 1. This, in particular, follows from the comparison of our results with the data
of [44] for the infinite plane containing a crack (λ = 0). Note, in Tables 3.1 and 3.2
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Table 3.1 Normalized SIF for internal curvilinear cracks in elastic half-plane

ε = δ/l Circle Ellipse Parabola

FI FII FI FII FI FII

Load σ∞
x = p

α = 0; λ = l/h = 0,5

0.2 0.1383 −0.3201 0.6523 −0.0993 0.1312 −0.3173

0.5 0.6150 −0.4857 0.9412 −0.1418 0.5034 −0.5176

1.0 1.1645 −0.1117 1.1645 −0.1117 0.9447 −0.5034

1.5 1.2726 0.3439 1.3559 −0.0798 1.2283 −0.3793

2.0 1.2230 0.6664 1.5314 0.0585 1.4463 −0.3722

2.5 1.1432 0.8862 1.6945 −0.0407 1.6342 −0.3263

α = 0; λ = 0.7

0.2 0.1453 −0.3208 0.6558 −0.0939 0.1382 −0.3172

0.5 0.6275 −0.4786 0.9465 −0.1329 0.5158 −0.5140

1.0 1.1751 −0.1064 1.1751 −0.1064 0.9589 −0.4981

1.5 1.2939 0.3439 1.3754 −0.0798 1.2478 −0.4325

2.0 1.2638 0.6682 1.5615 −0.0638 1.4765 −0.3775

2.5 1.2053 0.8951 1.7388 −0.0532 1.6767 −0.3368

α = 0; λ = 1.0

0.2 0.1595 −0.3244 0.6682 −0.0886 0.1524 −0.3208

0.5 0.6523 −0.4715 0.9571 −0.1170 0.5406 −0.5087

1.0 1.1929 −0.0904 1.1929 −0.0904 0.9890 −0.4874

1.5 1.3240 0.3563 1.4073 −0.0691 1.2868 −0.4236

2.0 1.3134 0.6824 1.6112 −0.0567 1.5296 −0.3740

2.5 1.2709 0.919 1.8079 −0.0496 1.7459 −0.3385

α = 0; λ = 2.0

0.2 0.2056 −0.3421 0.7214 −0.0709 0.1967 −0.3385

0.5 0.7267 −0.4573 1.001 −0.0762 0.6168 −0.5034

1.0 1.2549 −0.0479 1.2549 −0.0479 1.0794 −0.4644

1.5 1.4073 0.4094 1.5137 −0.0319 1.4109 −0.4024

2.0 1.4304 0.7622 1.7671 −0.0230 1.6980 −0.3580

2.5 1.4144 1.0333 2.0153 −0.0195 0.1932 −0.3261

α = 0; λ = 4.0

0.2 0.2694 −0.3704 0.8118 −0.0514 0.2625 −0.3669

0.5 0.7941 −0.4449 1.0404 −0.0425 0.6859 −0.4998

1.0 1.3240 −0.0213 1.3240 −0.0213 1.1662 −0.4538

1.5 1.5261 −0.4555 1.6413 −0.0106 1.5491 −0.4005

2.0 1.5934 0.8508 1.9586 −0.0071 1.8965 −0.3633

(continued)
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Table 3.1 (continued)

ε = δ/l Circle Ellipse Parabola

FI FII FI FII FI FII

Load σ∞
x = p

2.5 1.6059 1.1681 2.2687 −0.0035 2.2280 −0.3385

Load σ∞
x = p

α = π; λ = 0.5

0.2 0.1294 −0.3261 0.6540 −0.1046 0.1223 −0.3226

0.5 0.6168 −0.5034 0.9554 −0.1524 0.4998 −0.5371

1.0 1.2141 −0.1064 1.2141 −0.1064 0.9890 −0.5229

α = π; λ = 0.7

0.2 0.1276 −0.3315 0.6576 −0.1064 0.1205 −0.3279

0.5 0.6301 −0.5158 0.9748 −0.1524 0.5122 −0.5512

1.0 1.2850 −0.0798 1.2850 −0.0798 1.0723 −0.5211

Load p1(t) = –p

α = 0; λ = 0.5

0.2 1.9550 0.3828 0.6239 0.9411 1.9621 0.6386

0.5 1.4853 0.8171 0.6345 0.9713 1.6430 0.7178

1.0 0.8366 1.0156 0.8366 1.0156 1.4321 8454

1.5 0.4980 1.0315 1.0492 1.0085 1.4498 0.8614

2.0 0.3066 1.0244 1.2354 1.0032 1.5367 0.8667

2.5 0.1790 1.0138 1.4073 1.0014 1.6483 0.8720

α = 0; λ = 0.7

0.2 2.1854 0.3881 0.7160 1.0563 2.1943 0.3704

0.5 1.6359 0.9181 0.6646 1.1237 1.8150 0.8011

1.0 0.8596 1.1591 0.8596 1.1591 1.5455 0.9677

1.5 0.4466 1.1751 1.0812 1.1538 1.5455 0.9908

2.0 0.2056 1.1591 1.2814 1.1467 1.6288 0.9978

2.5 0.0407 1.1609 1.4675 1.1432 1.7458 1.0032

α = π; λ = 0.5

0.2 1.8894 0.4874 0.5051 0.9181 1.9000 0.4732

0.5 1.3931 0.8383 0.5671 0.9429 1.5526 0.7586

1.0 0.7922 0.9659 0.7922 0.9659 1.3701 0.8383

α = π; λ = 0.7

0.2 2.0436 0.6292 0.4431 1.0103 2.0578 0.6150

0.5 1.4321 0.9819 0.5051 1.0315 1.6218 0.9075

1.0 0.7479 1.0617 0.7479 1.0617 1.4197 0.9766
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Table 3.2 Normalized SIF for edge curvilinear cracks in elastic half-plane

ε = δ/l Circle Ellipse Parabola

FI FII FI FII FI FII

Load p1(t) = –p

0 1.121 0 1.121 0 1.121 0

0.2 1.167 0 0.728 0.455 1.166 −0.007

0.5 1.402 0 1.238 0.345 1.394 −0.079

1.0 2.242 0 2.242 0 2.113 −0.390

1.5 3.640 0 3.490 −0.540 3.160 −0.900

2.0 5.590 0 5.000 −1.290 4.500 −1.660

2.5 8.110 0 6.780 −2.250 6.130 −2.610

Load σ∞
x = p

0 1.121
1

0
0

1.121
1

0
0

1.121
1

0
0

0.2 1.045
0.869

0.257
0.370

0.253
−0.048

0.516
0.503

1.050
0.878

0.249
0.361

0.5 0.741
0.403

0.479
0.649

0.263
−0.171

0.494
0.543

0.838
0.537

0.438
0.620

1.0 0.280
−0.177

0.447
0.530

0.280
−0.177

0.447
0.530

0.611
0.215

0.487
0.661

1.5 0.072
−0.362

0.297
0.289

0.282
−0.164

0.418
0.502

0.505
0.085

0.472
0.623

2.0 −0.004
−0.387

0.185
0.119

0.281
−0.157

0.400
0.482

0.447
0.022

0.453
0.587

2.5 −0.030
−0.367

0.116
0.011

0.279
−0.152

0.388
0.467

0.411
−0.014

0.437
0.560

Comment: The results obtained for an infinite plane containing a crack are presented in the denom-
inators

values of normalized SIF FI = KI

/(
p
√

πl
)
and FII = KII

/(
p
√

πl
)
have been

present.
We now compare the stress intensity factors for α = 0 and α = π in the case where

the other values of the parameters of the problem (λ, ε, p1(t), ω(ξ)) are identical. In
both cases, the ends of the cracks are located at the same distance from the boundary
and the cracks are located on different sides of the straight line that passes through
their ends. For p1(t) = –p, we have K1|α=π < K1|α=0, while for σ∞

x = p, this is not
always true.

The influence of the edge of the half-plane in the case of an arbitrary orientation
of the crack (0 ≤ α ≤ π) was studied by analyzing an example of a crack made
along a circular arc in the case of a half-plane stretched at infinity. The character of

the curves KI(α)
/(

p
√

πl
)
(Fig. 3.12a) and KII(α)

/(
p
√

πl
)
(Fig. 3.12b) for the

analyzed values of the parameters λ and ε in the half-plane (curves 1 and 3) is the
same as for the infinite plane (curves 2 and 4). The influence of the edge is maximum
in the vicinity of the values of α at which the stress intensity factors are extreme.
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Note that the numerical results obtained for λ = 0 are in good agreement with
the data obtained on the basis of the exact analytic solution [40]. Indeed, even forM
=10, their absolute error in the entire range of α does not exceed 0.3×10−4 for ε =
0.5 and 0.4×10−2 for ε = 1.0.

Edge cracks [7]. Assume that a half-plane is weakened by a smooth edge curvi-
linear crack (cut) appearing on its boundary (Fig. 3.13).

We refer the half-plane to the coordinate system xOy and the contour of the cut
L to a system x1O1y1 connected with the system xOy by the formula z = z1eiα – ih
(z01= –ih). The parametric equation of the contour L has the form

t = w(ξ), t ∈ L , |ξ | ≤ 1. (3.163)

The faces of the crack are subjected to the action of self-balanced forces

N±
1 (t) + iT±

1 (t) = p1(t1) , t1 ∈ L . (3.164)

As in the case of internal curvilinear cracks, this problem is reduced to the solutions
of the SIE (3.155) with additional condition (3.160) or to the system of algebraic
equations (3.161).

The influence of configuration of curvilinear edge cracks on the SIF was inves-
tigated for two types of external loads: constant pressure upon the crack (p1(t) =
–p) and stretching of the half-plane at infinity by the forces σ∞

x = p; p0(t) =
p
(
e−2iαdt̄

/
dt − 1

)/
2; see (3.137).

We determined the SIF (Table 3.2) for cracks located along the arcs of semicircles,
semiparabolas, and quarters of ellipses and appearing on the boundary of the half-
plane at the right angle (h = 0, α = –π/2; Fig. 3.14a–c); the parametric equations of
the contours of these cracks have, respectively, the following forms [53]:

w(ξ) = l((ξ + 1)/2−iε)/(1−iε(ξ + 1)/2),

w(ξ) = l[(ξ + 1)/2 + iε((ξ + 1)2/4−1)],
w(ξ) = l[ξ + 1−iε(1−(ξ + 1)2/4)/[1 + (ξ + 1)2/4],

Fig. 3.13 General scheme
of location of the crack in the
half-plane
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Fig. 3.14 Schemes of curvilinear cracks in the half-plane corresponding to the results presented in
Table 3.2 (a–c) and Table 3.3 (d)

where ε = δ/l.
Comparing these results with the data accumulated for the infinite plane obtained

by complementing the half-plane containing a crack by its mirror image about to the
Ox-axis, we conclude that, under the load p1(t) = –p, the crack made in the plane

containing a crack changes the character of the dependence KI(ε)
/(

p
√

πl
)
: For

0≤ ε ≤ 2.5, in the case of the plane, we have KI(ε)
/(

p
√

πl
)

≤ 1 [53]. At the same

time, for the half-plane, this quantity rapidly increases. Under a load σ∞
x = p, the

crack made in the plane mainly does not affect the character of dependences of the
SIF.

The analysis of the dependences KI,II(ϕ)
/(

p
√

πR
)
shows that, for both types

of loading of the half-plane containing a crack located along the arc of a semicircle
with radius R (ε = (1 – cos ϕ)/sin ϕ; Fig. 3.15) under a load p1(t) = –p, the factor K I

infinitely increases as the parameter of crack length ϕ approaches π (Fig. 3.15a). At
the same time, under a load σ∞

x = p, this factor approaches zero (Fig. 3.15b). Note

that for p(t) = –p the inequality
∣∣
∣KII(ϕ)

/(
p
√

πR
)∣∣
∣ < 0, 01 is realized for all ϕ.

In the case of an edge crack arbitrarily oriented along an arc of a circle (Fig. 3.16),
the parametric equation of the crack contour takes the form

w(ξ) = l
/
2[(ξ − iε)

/
(1 − iξε)], |ξ | ≤ 1, (3.165)
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Fig. 3.15 Dependences of the stress intensity factors on the length of a crack located along an arc
of a semicircle: the solid lines correspond to K I and the dashed lines correspond to K II

Fig. 3.16 Dependences of
the SIF for a crack arbitrarily
oriented along the arc of a
circle on the angle β of
orientation and the curvature
ε of the circle: the solid lines
correspond to K I; the dashed
lines correspond to K II; (1) ε

= 0 (β∗
1= π); (2) ε = 0.2

(β∗
2≈ 2.75); (3) ε = 0.5

(β∗
3≈ 2.21)

and its location in the half-plane is determined by the parameters β = –α, λ = l/(2h)
= 1/sinβ; 0 < β < β*, β* = π – arcsin(2ε/(1 + ε2)), and ε = δ/a (the possibility of
contact of the crack contour with the boundary of the half-plane is excluded). It was
established that, under a load σ∞

x = p, the value of the factor K I for a curvilinear
crack (curves 2 and 3) subtended by a chord of length l may slightly exceed K I

obtained for the rectilinear crack of length l (curve 1) but never exceeds K I for the
rectilinear crack perpendicular to the direction of tension.

In the case of an arbitrarily oriented rectilinear crack, the obtained values of the
SIF are in good agreement with the data of [25], while the angles of initial crack
propagation are in good agreement with the results obtained in [41].
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Table 3.3 SIF comparative
table with results obtained by
authors and in paper [21] for
edge crack along of circle arc

θ KI(θ)
/
p
√

πa

Obtained results Data of [21]

0 1.1215 1.12

π/12 1.115 1.11

π/6 1.096 1.10

π/4 1.065 1.07

π/3 1.020 1.02

5π/12 0.964 0.96

π/2 0.901 0.90

We also consider the case of tension of a half-plane containing a crack of length a
along a circular arc located so that the tangent to its contour at the end is perpendicular
to the direction of tension (Fig. 3.14d). The parametric equation of the crack contour
is specified by relation (3.165), where ε = (1 – cos(θ/2))/sin(θ/2) and the position
in the half-plane is determined by the parameters α = – (π + θ)/2 and λ = l/(2h)
= 1/cos(θ/2). We also determined the values of KI(θ)

/(
p
√

πa
)
(Table 3.3). In this

case, the quantity KII(θ)
/(

p
√

πa
)
is negative (for the rectilinear crack, it is equal

to zero) and does not exceed 0.9×10−2 in modulus.

3.9 Influence of Model Contact Loads Shape (Distribution)
on Stress Intensity Factors for Edge Rectilinear Crack

Toanalyze the influence of the shape ofmodel contact loads on theSIF for a half-plane
with edge crack, we determine the right-hand sides of the SIE (3.155) for the loads
depicted in Fig. 3.8. We first find the Kolosov-Muskhelishvili complex potentials
�0(z) and �0(z) for a continuous half-plane under the action of the corresponding
model loads and then, on the basis of relations (3.157), determine the functions P(η).
For simplicity, it is assumed that the crack is free of loads (p1(t)= 0) and the stresses
at infinity are also absent (P∞

0 (η) = 0), i.e., P(η) = P0(η).
Concentrated force. For a concentrated force with the normal component P and

tangential component Q = fP applied at a point x0 on the boundary of the half-plane
(Fig. 3.8a), the first boundary condition in (3.152) takes the form

N (x) + iT (x) = −(P + i Q)δ(x − x0) = −P(1 + i f )δ(x − x0), y = 0,
(3.166)

where δ(x) is the Dirac delta-function.
In this case, the complex potentials �0(z) and �0(z) are given by the following

formulas [6, 37, 42]:
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�0(z) = P

2π

i − f

z − x0
; �0(z) = P

2π

[
i + f

z − x0
+ i − f

(z − x0)
2 x0

]
. (3.167)

On the basis of relations (3.157), the right-hand side of Eq. (3.155) takes the form
[6, 42]

P(η) = P

π

{

Re

[
( f − i)e−iα

a(η)

]
w′(η) − Re

[
eiα( f + i)a(η)

]

a2(η)
w′(η)

}

, (3.168)

where t = w(ξ) is a parametric equation of the crack contour (see (3.151)); a(η) =
w(η) + (z01 − x0

)
e−iα .

Constant pressure. In the casewhere a uniformly distributed pressurewith normal
component p(x) = p and constant component q(x) = fp acts on a segment of the
boundary of half-plane of length 2a, (Fig. 3.8c, 3.10), we represent the first boundary
condition in (3.152) in the form

N (x) + iT (x) = −p(1 + i f ), |x − x0| ≤ a, y = 0, (3.169)

and find the complex potentials �0(z) and �0(z) as follows [16, 37]:

�0(z) = p (1 + i f )

2π i
ln
z − x0 − a

z − x0 + a
;

�0(z) = − p f

π
ln
z − x0 − a

z − x0 + a
+ p(i − f )az

π
[
(z − x0)

2 − a2
] .

(3.170)

For the right-hand side of the SIE (3.155), we can write [16, 17]:

P(η) = p

π

{
w′(η)Re

[
(i − f ) ln

b1(η) + 1

b1(η) − 1

]

+ w′(η)e−2iα

[

(i + f )
b1(η) − b1(η)

b21(η) − 1
+ f ln

b1(η) + 1

b1(η) − 1

]}

, (3.171)

where b1(η) = λ – γ – εω(η) eiα; ε = l/a; λ = x0/a; γ = z01/a; ω(η) = w(η)/l. Here, l
is a parameter characterizing the length of the curvilinear crack and λ is the relative
distance from the middle of the contact segment to the crack mouth.

Elliptic distribution: total slip. If a segment of the boundary of the half-plane
is subjected to the action of a load distributed according to the elliptic law (Hertz
contact forceswith tangential component; Figs. 3.8b and3.10), then thefirst boundary
condition in (3.148) takes the form

N (x) + iT (x) = −p0(1 + i f )
√
a2 − (x − x0)

2
/
a, |x − x0| ≤ a,

y = 0,
(3.172)
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where p0 is the maximum value of pressure in the contact zone.
Under this load, the complex potentials can be found in the form [16, 37]

�0(z) = p0(i − f )

2a

{
(z − x0) + i

√
a2 − (z − x0)

2

}
;

�0(z) = p0
2a

{
(i + f )

(
(z − x0) + i

√
a2 − (z − x0)

2

)
−

−(i − f )

[(
(z − x0) + i

√
a2 − (z − x0)

2
)

+ z

(

1 + (z − x0)

i
√
a2 − (z − x0)

2

)]

.

(3.173)

On the basis of relations (3.157) and (3.173), the right-hand side of the integral
equation takes the form [16]

P(η) = p0
{
Re[(1 + i f )(a(η) − ib(η))]w′(η) − [(1 − i f )

(
b(η)

/
a(η) − i

)×
×iIm

(
εω(η)eiα + γ

)− i f
(
a(η) + ib(η)

)]
e−2iαw′(η)

}
,

,

(3.174)

where

a(η) =
√
1 − b2(η); b(η) = εω(η)eiα + γ − λ; γ = z01

/
a;

ω(η) = w(η)
/
l. (3.175)

Note that this formula was first established by Datsyshyn and Terlets’kyi in the
paper “Stress-strain state near edge curvilinear cracks in the half plane under elliptic
loading applied on its boundary”, Fiz.-Khim. Mekh. Mater, Deposited in the State
Scientific-Technical Library of Ukraine 9.01.1997, No. 57 UK 97.

Distribution of forces taking into account the degree of rounding of edges of the
counterbody. If the load acts on a segment of the boundary of half-plane according
to the scheme presented in Fig. 3.8d, i.e., with regard for the presence of the initial
contact line (band) and the degree of rounding of the edges of counterbody, then,
by using the solution of the corresponding contact problem, [1], we represent the
boundary condition (3.152) in the form

N (x) + iT (x) = −p(x)(1 + i f ), |x − x0| ≤ a, y = 0, (3.176)

where

p(x) = P(1 + δ)

bπF(δ)

[(
π − 2ϕ0 + sin ϕ0 ln

∣
∣∣∣tg

ϕ + ϕ0

2
tg

ϕ − ϕ0

2

∣
∣∣∣

])
cosϕ

+ sin ϕ ln

∣∣∣∣
sin(ϕ + ϕ0)

sin(ϕ − ϕ0)

∣∣∣∣, (3.177)
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ϕ = arcsin
x

a
, F(δ) = π − 2ϕ0

2 sin2 ϕ0
− ctgϕ0,

ϕ0 = arcsin
1

1 + δ
, δ = (a − b)

/
b.

(3.178)

Here, P is the resultant vector of normal forces of the contact load, 2b is the length
of the initial contact line, 2a is its total length, which increases as a result of contact
of the bodies. In this case, the parameter δ characterizes the degree of rounding of
the edges of counterbody whose radii are determined by the formula

R = b2EF(δ)

4P
(
1 − ν2

) , (3.179)

where E and ν are the elastic constants of the materials (we consider the case where
the materials of the contacting bodies are identical).

Note that, as in all previous cases, it is now assumed that the conditions of total
slip between the contacting bodies are satisfied.

As above, to determine the complex potentials �0(z) and �0(z), we use their
representations (3.124) [37, 44, 53] in the firstmain problemof the theory of elasticity
for a half-plane. By using these representations, we get

�0(z) = 1 + i f

2π i

x0+a∫

x0−a

p(x)

x − z
dx;

�0(z) = 1

2π i

x0+a∫

x0−a

[
(1 − i f )p(x)

x − z
− (1 + i f )xp(x)

(x − z)2

]
dx,

(3.180)

where p(x) is given by relation (3.177). In view of of (3.177), (3.157), and (3.180),
we represent the right-hand side of the SIE (3.155) in the integral form. In this case,
for the numerical solution of the problem, we apply the Simpson quadrature formula
to the right-hand side of the SIE [61].

Elliptic distribution: slipping-sticking (symmetric case). In the case where the
boundary of a half-plane suffers the action of a contact load used to model the
presence not only of the sections of slip but also the section of sticking (Figs. 3.8e
and 3.10b) in contacting bodies [24, 26], the normal and tangential forces in the
entire contact section are distributed as follows:

p(x) = p0
a

√
a2 − (x − x0)

2, |x − x0| ≤ a, y = 0
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q(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f
p0
a

√
a2 − (x − x0)

2, −a ≤ x − x0 ≤ −c, c ≤ x − x0 ≤ a ,

y = 0;
f
p0
a

[√
a2 − (x − x0)

2 −
√
c2 − (x − x0)

2

]
, |x − x0| ≤ c,

y = 0.
(3.181)

Here, 2c is the length of the section of sticking symmetric about the center of the
contact section. For this distribution of the model contact load, by virtue of relation
(3.124), we find the complex potentials in the form

�0(z) = p0
2a

{
(i − f )

[
Z + i

√
a2 − Z2

]
+ f

[
Z + i

√
c2 − Z2

]}
;

�0(z) = p0
a

{
f − i

2
z

(
1 − i Z√

a2 − Z2

)
+ f

[
i
√
a2 − Z2 + Z

]
−

− f

2
z

(
1 − i Z√

c2 − Z2

)
− f

[
Z + i

√
c2 − Z2

]}
, (3.182)

where Z = z – x0.
As above, the right-hand side of the integral equation (3.155) takes the form

P(η) = p0
{
Re[(1 + i f )(a(η) − ib(η))]w′(η)−

− [(1 − i f )
(
b(η)

/
a(η) − i

)
iIm
(
εω(η)eiα + γ

)

−i f
(
a(η) + ib(η)

)]
e−2iαw′(η)

}+
+ f p0ε1c

/
a
{−Re(ia1(η) + b1(η))w′(η) − [(ib1(η)

/
a1(η) + 1

) ×
× Im

(
ε1ω(η)eiα + γ1

)− (
ia1(η) − b1(η)

)]
e−2iαw′(η)

}
(3.183)

where the notation a(η), b(η), ε, λ, γ, and ω(η) is the same as in relations (3.175);

a1(η) =
√
1 − b21(η), b1(η) = ε1ω(η)eiα + γ1 − λ1;

ε1 = l
/
c; λ1 = x0

/
c; γ1 = z01

/
c. (3.184)

It should be emphasized that, according to [26], the relative half length of the
section of sticking c/a (see Fig. 3.8f) is given by the formula

c/ a =
√
1 − ∣∣Q/ f P

∣
∣, (3.185)

whereQ and P are, respectively, the tangential and normal components of the vector
of the external load.
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Elliptic distribution: slipping-sticking (asymmetric case). If the section of stick-
ing is located asymmetrically, e.g., is adjacent to the left edge of the contact section,
then the distribution of normal and tangential forces in this section (Fig. 3.8f, 3.10)
can be represented as follows [26]:

p(x) = p0
a

√
a2 − (x − x0)

2, |x − x0| ≤ a, y = 0;

q(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f
p0
a

√
a2 − (x − x0)

2, c − d ≤ x − x0 ≤ a , y = 0;

f
p0
a

[√
a2 − (x − x0)

2 −
√
c2 − ((x + d) − x0)

2

]
,

− a ≤ x − x0 ≤ c − d, y = 0,
(3.186)

where 2c is the length of the section of sticking, c/ a =
√
1 − ∣∣Q/ f P

∣∣, and d/a =
1 – c/a.

For the indicated distribution of the contact load, the complex potentials of the
problem take the form:

�0(z) = p0
2a

{
(i − f )

[
Z + i

√
a2 − Z2

]
+ f

[
i
√
c2 − (z − D)2 + (z − D)

]}
;

�0(z) = p0
a

{
i − f

2
z

(
1 − i Z√

a2 − Z2

)
+ f

[
i
√
a2 − Z2 + Z

]
−

− f

2
z

(

1 − i
z − D

√
c2 − (z − D)2

)

− f

[
i
√
c2 − (z − D)2 + (z − D)

]}

,

(3.187)

where Z = z – x0 and D = x0 – d.
In this case, the right-hand side of the integral equation (3.155) is given by formula

(3.183) with λ1 = (x0 – d)/c.
Numerical results. We perform the numerical analysis of the stress intensity

factors K I and K II for the edge rectilinear arbitrarily oriented crack in the half-plane
loaded by model contact forces according to the schemes presented in Fig. 3.8a–f.
In what follows, as already indicated, the crack length, the angles of its inclination
to the edge, the parameters of the external load, and the friction coefficient between
the contacting bodies are mainly chosen with regard for the conditions of fretting
fatigue and rolling. Consider a crack of length l inclined at an angle β to the edge of
the half-plane (Fig. 3.17). We locate the origins of the principal and local coordinate
systems at the crack mouth and direct the O1x1-axis along the crack. Then, in the
main relations of the previous subsection, we have α = –β and z01 = 0, and the
parametric equation of the crack contour takes the form
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Fig. 3.17 Computational
scheme of the problem

t = x1(ξ) = w(ξ) = lω (ξ) = l (ξ + 1)
/
2, 0 ≤ x1 ≤ l, |ξ | ≤ 1. (3.188)

As already indicated, we solve the singular integral equations obtained from Eq.
(3.155) with its right-hand sides (3.168), (3.171), (3.173), and (3.183) by the method
of mechanical quadratures. It should also be emphasized that all numerical results,
i.e., the dependences K I(λ, ε, β) and K II(λ, ε, β), are presented for the locations of
contact loads guaranteeing, for a given direction of tangential forces, the validity of
the condition K I(λ) > 0, i.e., the condition of absence of the contact of crack faces
in the vicinity of the crack tip. For the direction of tangential forces that coincides
with theOx-axis, the cracks with completely noncontacting faces appear for λ > 1.0,
i.e., when the contact load is located to the right of the crack mouth. We also note
that, in analyzing the SIF, we focus our attention on their maximum values because
all predictions of possible mechanisms of the fracture processes in contacting bodies
made in what follows are performed by using these values.

It is known [29, 30, 48] that concentrated forces and elliptic distributions of forces
are most often used to model the action of counterbody in the case of contact rolling
interaction. For this interaction, the contact zone of the bodies is small as compared
with their sizes and the initial contact is a point contact (linear for cylindrical bodies).

For these cases, the data on the dependence of the SIF on the parameters of the
geometric-force scheme are available from the literature. In order to establish the
limits of applicability of the scheme of loading by concentrated forces instead of
the elliptic distribution (see the schemes in Figs. 3.8a, b), we present the plots of

the normalized stress intensity factors FI,II = KI,II(λ, ε0, β)
√

πl
/

P for both these

types of loads in Fig. 3.18. The parameter λ = x0/l characterizes the location of the
load on the boundary of the half-plane (Fig. 3.17) and ε0 = a/l is the relative half
length of the contact section. The numerical analysis was performed for the friction
coefficient f = 0.3 and two angle of inclination of the crack to the boundary (β =
π/6 and β = 5π/6) at which the edge cracks are most often initiated in rolling bodies.

On the basis of the data from [6, 24, 42] and the plots depicted in Fig. 3.18, we
can make the following conclusions:

• the characters of the curves K I(λ, ε0, β) and K II(λ, ε0, β) obtained for the elliptic
loads and concentrated forces are identical;
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Fig. 3.18 Normalized SIF
FI and FII for the edge
rectilinear inclined crack
under the action of: a a
concentrated force (ε0 = 0)
or b forces distributed
according to the elliptic law
(ε0 > 0) on the boundary of
the half-plane

• the smaller the contact section for the elliptic load (the smaller ε0), the faster the
corresponding curves (both for K I and K II) merge with the curve for the concen-
trated force (ε0 = 0);

• the concentrated force induces the highest maximum values of K I and |K II|. As the
contact zone enlarges, the maximum values of the SIF decrease.

• the maximum values of K I(λ, ε0, β) for the angle β = π/6 are much higher than
for the angle β = 5π/6 and the same ε0;

• for the angle β= 5π/6, the contact of the crack faces is terminated (i.e.,K I becomes
positive) immediately after opening of the crack mouth by the load moving in the
positive direction of the Ox-axis; for the angle β = π/6, this happens for much
larger λ; hence, K I and |K II| also attain their maximum values for the angle β =
5π/6 faster; it is clear that, for both these angles, the larger the contact section, the
later the crack mouth is opened;

• K II(λ, ε0, β) are predominantly positive for β = π/6 and negative for β = 5π/6;
max |K II(λ, ε0, β)| for the angle β = 5π/6 are much larger than for the angle β =
π/6 for the same ε0.
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Fig. 3.19 Normalized SIF FI and FII for a rectilinear inclined edge crack under the action of
uniformly distributed pressure on the boundary of the half-plane

Note that numerical data and the detailed analysis of changes in the stress intensity
factors in the course of motion of the Hertz (elliptic) contact load along the edge of
a half-plane weakened by an edge (or internal) crack are presented in Chap. 4.

In contact problems, parallel with elliptic distributions and concentrated forces,
it is also customary to use, as a simple model load, the uniform distribution of forces
(constant pressure). In particular, this distribution is used if the contact section of
bodies is quite large (comparable with their sizes), which is typical, in particular, of
the contact fretting fatigue interaction. In Fig. 3.19,we present the plots of normalized
stress intensity factors FI,II(λ, ε, β) = KI,II/

(
p
√

πa
)
for the case of contact loading

of the edge of a half-plane by normal and tangential forces of the same intensity
(scheme in Fig. 3.8c). The parameter λ = x0/a characterizes the location of the load
on the boundary of the half-plane (Fig. 3.17) and ε = l/a characterizes the relative
crack length. The plots were constructed for the friction coefficient f = 0.75, fixed
values of the crack length (ε = 0.1 and ε = 0.5), and different angles of inclination
of the crack to the boundary of the half-plane (β = π/3, β = π/2, and β = 2π/3)
observed in contacting bodies under the conditions of fretting fatigue.

It was established that:

• in the case where the boundary of the loading zone is close to the crack mouth
(1.0 ≤ λ ≤ 1.5), the character of the curves K I(λ, ε, β) and |K II(λ, ε, β)| strongly
depends on the orientation of the crack and its length; as the distance from the load
to themouth increases (as a function ofλ), the values ofK I(λ, ε, β) and |K II(λ, ε, β)|
decrease and, hence, the curves ε = 0.5 are, in this case, located “higher”;

• the maximum values of K I(λ, ε, β) are higher; moreover, for short cracks, they are
attained faster (for smaller λ); the maxima of K I(λ, ε, β) appear within the range
of angles π/3 ≤ β ≤ π/2;

• the dependences ofK II(λ, ε, β) have a well-pronounced maximum at the angle β =
π/3 for λ = 1.0; in this case, the value ofK II for ε = 0.5 exceeds the corresponding
value for ε = 0.1;



www.manaraa.com

3.9 Influence of Model Contact Loads Shape (Distribution) … 123

• for large angles of inclination of the cracks to the boundary of the half-plane
(β≥π/2), the SIFK II(λ, ε, β) are predominantly negative, i.e., the sign of tangential
stresses in the vicinity of the crack tip differs from they sign observed for small
angles.

It should be emphasized that a large body of numerical data is presented in Chap. 5
devoted to the contact fretting fatigue interaction. Moreover, the same chapter also
contains the analysis of the data obtained under the action constant pressure applied
to the edge of the half-plane weakened by a crack.

A contact load that takes into account the degree of rounding of the edges of the
counterbody is described by relations (3.176–3.179) (see the scheme in Fig. 3.8d) is
used, parallel with constant pressure, as model loading in the cases where the contact
section is relatively large. Moreover, this load takes into account the shape of the
edges of counterbodymore accurately. It can be used to model the contact interaction
both of fixed joints (press fits, riveted, splined, and bolted joints) often subjected to
fretting fatigue and of the gearings operating under the conditions of rolling.

The detailed numerical analysis of this case is presented in Chap. 5. Here, we
restrict ourselves to the evident conclusion: The smaller the radius of rounding of
the edges of the counterbody, the higher the SIF and, in particular, their maximum
values at the tip of an edge crack located near the end of the zone of contact loading
(Fig. 3.17).

Complicated elliptic contact load (the boundary conditions (3.181); Fig. 3.8e).
This type of loading is used to model the case where the conditions of sticking are
realized in the central part of the contact zone between the bodies of length 2c and
the conditions of slip are preserved on the edges of this region. This type of contact
conditions is typical of the fretting fatigue contact interaction.

The performed calculations demonstrate, as the section of sticking becomes larger,
the SIF K I(λ) and K II(λ) decrease; in particular, the maximum value of K I(λ)
becomes 4.4 time lower, whereas K II(λ) decreases by a factor of 2.8 as the rela-
tive length of the section of sticking c/a increases from 0 up to 0.85. A more detailed
analysis of this case is carried out in Chap. 5.

In Fig. 3.20, we show the dependences FI,II = KI,II(λ, ε, β)/
(
p0

√
πa
)
plotted for

a complex elliptic contact load simulating the case where the conditions of sticking
between the contacting bodies are realized in a part of the contact zone on the side
of the crack, while the conditions of slip are preserved in the remaining part of
this zone. This type of contact load is described by the boundary conditions (3.186)
and schematically depicted in Fig. 3.8f. It corresponds to the transient stage at the
beginning of the process of rolling. The calculations were performed for the friction
coefficient f = 0.3, the angles of inclination of the crack to the edge of the half-plane β

= π/6 and β = 5π/6, and the relative crack length ε = 0.2. As already indicated, these
combinations of the parameters are characteristic and dangerous from the viewpoint
of propagation of cracks in rolling. The analysis of the obtained curves yields the
following conclusions:

• the character of the curves of K I(λ) and K II(λ), as in the case of simple elliptic
loading (Fig. 3.18), strongly depends on the orientation of the crack;
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Fig. 3.20 Normalized SIF FI and FII for the rectilinear inclined edge crack under the action of
a complex elliptic load applied to the boundary of the half-plane simulating the presence of an
asymmetric section of sticking in the contact zone

Table 3.4 Dependence of
maximum values of
normalized SIF on relative
length c/a of sticking section

Q/fP c/a β = π/6 β = 5π/6

max FI max |FII| max FI max |FII|

1.00 0.00 0.05582 0.19423 0.04500 0.02988

0.90 0.32 0.03862 0.19340 0.03501 0.02168

0.60 0.63 0.01704 0.17513 0.01606 0.00954

0.30 0.84 0.00514 0.16149 0.00493 0.00850

• maxK I(λ) and max|K II(λ)| for the angle β = π/6 are higher than for the angle β =
5π/6 for the identical lengths of the sections of sticking;

• as the section of sticking becomes larger, the values ofK I(λ) and |K II(λ)| decrease;
in particular, for the angle β = π/6, the quantity max K I(λ) becomes 10.9 times
lower, while the quantity max|K II(λ)| decreases by a factor of 1.2 as the relative
length of the section of sticking c/a increases from0 to 0.84; for the angle β= 5π/6,
maxK I(λ) becomes 9.13 times lower, while the quantity max |K II(λ)| decreases by
a factor of 3.5 (see Table 3.4).

We also mention that the numerical results obtained for the cases of action of
concentrated forces and constant pressure are in good agreement with data of Rooke
and Jones [30, 48], while the results obtained for elliptic loading agree with data
of Keer et al. [29]. The character of the curves obtained for the case of complex
symmetric elliptic loading agrees with data obtained by Hills and Nowell [24] and,
for the case of contact loading taking into account the degree of rounding of edges
of the counterbody, with the data of Dubourg and Villechaise [19].
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3.10 Edge Crack with Contacting Faces in Half-Plane
Under Action of Moving Hertz Load

Singular integral equations [12, 13]. Much attention is given to the determination
of the stressed state in the vicinity of edge cracks whose faces may overlap under the
action of an external contact load [14]. The theoretical works are mainly devoted to
the analysis of two-dimensional problems [3, 18, 23, 32, 33, 56] and, in particular,
to the evaluation of the stress intensity factors (SIF) at the tips of a rectilinear crack
in the half-plane under the action of a given load applied to its boundary (concen-
trated forces, Hertz and uniformly distributed contact forces) for various boundary
conditions imposed on the crack faces and modeling their contact interaction (see
the bibliography in [44, 51, 53]).

In this section, by themethod of singular integral equations [44, 53], we consider a
more general case, namely, the case of a curvilinear crack in a half-plane for various
conditions of interaction between the crack faces (contact in the presence of the
sections of sticking and slip with friction).

Curvilinear crack under general conditions of contact of the faces. Assume that
an elastic isotropic half-plane referred to the coordinate system xOy is weakened by
a curvilinear crack appearing on its edge and is referred to a local coordinate system
x1O1y1 (Fig. 3.21). The local coordinate system is connected with the principal
coordinate system by the formula z = z1eiα + z01, where α is the inclination angle
of the axis O1x1 to Ox and z01 is the affix of the point O1 in the system xOy. It is
assumed that the Hertz contact forces

s(x) = −p0(1 + i f )
√
a2 − (x − x0)

2/a, |x − x0| ≤ a, (3.189)

where p0 is the maximum pressure at the center of the contact section of length 2a
and f is the Coulomb friction coefficient in contact, are applied to the boundary of
the half-plane.

The boundary conditions of the problem on the boundary of the half-plane take
the form

Fig. 3.21 General scheme
of the problem
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σy(x) − iτxy(x) = s(x), |x − x0| ≤ a; (3.190)

σy(x) − iτxy(x) = 0, |x − x0| > a. (3.191)

By Lop we denote a collection of sections ArBr (r = 1, …, R) of the crack contour
L along which the crack faces are not in contact. These sections are enumerated in
the direction from the crack tip A to its mouth B, namely,

Lop =
R⋃

r=1

Ar Br . (3.192)

Assume that, under the action of contact forces s(x), the crack faces in the zones
of compression may overlap, which promotes the formation of contact stresses in
these sections. Beyond the contact sections, the crack faces are free of loads.

Assume that the crack faces contact with friction and, therefore, the contact sec-
tions L\Lop can be split into the sections of slipping Lsl and sticking Lst, namely,

L\Lop = Lsl

⋃
Lst . (3.193)

Thus, the boundary conditions on the crack faces take the form

N±(τ) + iT±(τ) = 0, τ ∈ Lop; (3.194)

v+
n (τ) − v−

n (τ) = 0, τ ∈ Lsl; (3.195)

T±(τ) = fc sign
[
T̃±(τ)

] ∣∣N±(τ)
∣∣, τ ∈ Lsl; (3.196)

u+(τ) − u−(τ) + i
[
v+(τ) − v−(τ)

] = 0, τ ∈ Lst ; (3.197)

N+(τ) − N−(τ) + i
[
T+(τ) − T−(τ)

] = 0, τ ∈ Lst . (3.198)

Here, vn(τ) are the normal components of displacements of the crack faces, u and
v are the components of the vector of displacements in the directions of the O1x1
and O1y1-axes, respectively, and f c is the Amonton-Coulomb friction coefficient in
contact between the crack faces.

Note that the boundaries of the sections of contact of the crack faces and the
sections of sticking and slipping are not known in advance and can be found parallel
with the solution of the integral equations of the problem from the additional condi-
tions. In this case, the solution of the contact problem is constructed as a result of the

step-by-step process with the use of an iterative procedure. The quantity sign
[
T̃ (τ)

]

in relation (3.196) is introduced to fix the sign of contact stresses in the iterative
procedure of finding the boundaries of the contact sections on the crack faces. To
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determine the contact sections L\Lop of the crack, we use the condition of vanishing
of the mode I stress intensity factor at the ends of the intervals ArBr , namely,

KI(Ar ) = 0, KI = (Br ) = 0, r = 1, . . . , R, (3.199)

and find the sections of sticking and slipping in the case of contact of the crack faces
from the condition

fc
∣∣N±(τ)

∣∣ >
∣∣T±(τ)

∣∣, τ ∈ Lst . (3.200)

We now represent the derivative of the jump of the unknown vector of displace-
ments on the crack line L in the form of a sum of two functions as follows:

g′(τ) = g′
1(τ) + g′

2(τ), (3.201)

where

g1(τ) = 2G

1 + æ

[
v+
n (τ) − v−

n (τ)
] dτ

ds
; (3.202)

g2(τ) = − 2iG

1 + æ

[
u+
n (τ) − u−

n (τ)
] dτ

ds
. (3.203)

Here,G is the shear modulus, æ= 3 – 4μ for plane deformation, æ= (3 –μ)/(1+
μ) for the generalized plane stressed state, μ is Poisson’s ratio, and un(τ), vn(τ) are,
respectively, the tangential and normal components of the vector of displacements
of the crack faces.

Satisfying the boundary conditions of problem (3.194)–(3.198)with the help of the
integral representations (3.154) of the Kolosov-Muskhelishvili complex potentials
expressed via the functions g′

1(t) and g′
2(t), we arrive at the following system of

singular integral equations:

Re D(τ) = πReP(τ), τ ∈ Lop; (3.204)

Im D(τ) + f0ReD(τ) = π [ImP(τ) + f0ReP(τ)], τ ∈ Lop

⋃
Lsl .

(3.205)

Here,

D(τ) = I
{
Lop
}
g′
1(τ) + I

{
Lop

⋃
Lsl

}
g′
2(τ); (3.206)

f0 =
{
0, τ ∈ Lop,

− fcsign [Im(P(τ))], τ ∈ Lsl; (3.207)
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P(τ) = p0

{

Re [(1 + i f ) c(τ)] −
[

(1 − i f )
c(τ)

a(τ)
Imb(τ) − i f c(τ)

]
dτ

dτ
e−2iα

}

;
(3.208)

a(τ) =
√
1 − b2(τ); b(τ) = (τ/ a)eiα + γ − λ; (3.209)

c(τ) = a(τ) + ib(τ); (3.210)

τ1 = τ/a, γ = z01/a, λ = x0/a. (3.211)

The operator I{L} is given by the formula

I{L}ψ(t) =
∫

L

[
R(t, τ)ψ(t)dt + S(t, τ)ψ(t)dt

]
, (3.212)

where

R(t, τ) = eiα

2

{
1

T − T ′ − 1

T − T ′ − 2i
ImT

(T − T ′)2
−

−
[

1

T − T ′ − 1

T − T ′ − 2iImT
T + T ′ − 2T ′

(T − T ′)3

]
dt̄

dt
e−2iα

}
;

S(t, τ) = e−iα

2

{
1

T − T ′ − 1

T − T ′ + 2i
ImT

(T − T ′)2
−

−
[

T − T ′

(T − T ′)2
+ T − T ′

(T − T ′)2

]
dt

dt
e−2iα

}
; (3.213)

T = teiα + z01, T ′ = τeiα + z01. (3.214)

In order that system (3.204), (3.205) be complete, it is necessary to complement
it with the following equations [53]:

Im

[
g1(τ)

dτ

ds

]
= 0, τ ∈ Lop; (3.215)

Re

[
g2(τ)

dτ

ds

]
= 0, τ ∈ Lop

⋃
Lsl , (3.216)

To solve the system of equations (3.204), (3.205), (3.215), and (3.216), in view
of the fact that the limits of integration (the sizes of the sections of contact of the
crack faces) are unknown, we use the method of successive approximations. As the
zero-order approximation of coordinates of the points Ar and Br separating the free
sections of the crack from the contact sections, we take points at which the normal
stresses on the crack line in a continuous half-plane with loaded boundary are equal
to zero, i.e.,
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Re P(τ) = 0, τ ∈ L . (3.217)

Further, on the basis of the solution of the system, we seek the values of the factors
K I that may differ from zero at these points. Thus, in each next stage of construction
of the solution, we gradually change the boundaries of the open sections of the crack
until conditions (3.199) are satisfied with a given accuracy. Simultaneously, by using
the iterative procedure and taking into account condition (3.200), we determine the
slipping and sticking sections in the contact zones of the crack faces.

Note that, in the open regions Lop of the crack, the following condition must be
satisfied by the final result:

δ(τ) = v+
n (τ) − v+

n (τ) = 1 + æ

2G
Re

[
g(τ)

dτ

dτ

]
> 0, τ ∈ Lop. (3.218)

This condition reflects the absence of contact of the crack faces and is deduced
from relations (3.200)–(3.203).

Rectilinear crack under the conditions of contact of its faces with friction. The
case of edge rectilinear crack in the half-plane subjected to the action of a Hertz
contact load on its boundary is thoroughly investigated in the next chapters of the
book. In the present section, in order to illustrate the results presented above, we
consider two special cases. Assume that a crack of length l is inclined at an angle β

= –α to the boundary of the half-plane (Fig. 3.22). The location of the contact load
relative to the crack mouth is specified by the parameter λ = x0/a. In the course of
motion of the contact load, there exist the ranges of the parameter λ for which the
crack is either closed or partially closed. For the sake of simplicity, we assume that,
in contact, the crack faces slip with friction. At the same time, in the case of partial
contact, the contact section is located near the crack tip (see Fig. 3.22).

Then the boundary conditions of the problem on the boundary of the half-plane
take the form (3.190) and (3.191) and, for the crack faces, the boundary conditions
can be written as follows:

N±(x1) + iT±(x1) = 0, 0 < x1 < l∗; (3.219)

Fig. 3.22 Edge rectilinear
crack in the half-plane under
the action of the Hertz load
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v+(x1) − v−(x1) = 0, l∗ < x1 < l; (3.220)

T±(x1) = fc sign
[
T̃±(x1)

] ∣∣N±(x1)
∣∣, l∗ < x1 < l, (3.221)

where l* is the open part of the crack.
According to relations (3.204) and (3.205), we get the following singular integral

equations of the problem:

Re

l∗∫

0

E(t, x1)ϕ1(t)dt − Im

l∫

0

F(t, x1)ϕ2(t)dt = πReP(x1), 0 < x1 < l∗;

(3.222)
l∗∫

0

[ImE(t, x1) + f0ReE(t, x1) ]ϕ1(t)dt

+
l∫

0

[ReF(t, x1) − f0ImF(t, x1) ]ϕ2(t)dt =

= π [ImP(x1) + f0ReP(x1)] , 0 < x1 < l

(3.223)

for the following unknown functions:

ϕ1(x1) = 2G

1 + æ

d

dx1

[
v+(x1) − v−(x1)

]
, 0 < x1 < l∗; (3.224)

ϕ2(x1) = − 2Gi

1 + æ

d

dx1

[
u+(x1) − u−(x1)

]
, 0 < x1 < l. (3.225)

The kernels of the SIE (3.222) and (3.223) are given by the formulas

E(t, x1) = R(t, x1) + S(t, x1); (3.226)

F(t, x1) = R(t, x1) − S(t, x1). (3.227)

In this case, the functionsP(x1),R(t, x1), and S(t, x1) are given by relations (3.208),
(3.213).

By the change of variables

t =
{
w1(ξ) = k∗l(ξ + 1)/2, |ξ | ≤ 1 for 0 < t < l∗

(
k∗ = l∗

/
l
)

w(ξ) = l(ξ + 1)/2, |ξ | ≤ 1 for 0 < t < l

(3.228)

and
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x1 =
{
w1(η) = k∗l(η + 1)/2, |η| < 1 for 0 < x1 < l∗

w(η) = l(η + 1)/2, |η| < 1 for 0 < x1 < l
(3.229)

the integral equations of the problem (in the normalized form) are as follows:

1∫

−1

[
ReE(ξ, η)ϕ1(ξ) − ImF ′(ξ, η)ϕ2(ξ)

]
dξ = πReP1(η), |η| < 1; (3.230)

1∫

−1

{ [
k∗ImE ′′(ξ, η) + f0ReE(ξ, η)

]
ϕ1(ξ)

+[ReF(ξ, η) − f0ImF ′(ξ, η)
]
ϕ2(ξ)

}
dξ =

= π [ImP(η) + f0ReP1(η)] , |η| < 1.

(3.231)

Here, we have introduced the notation

E(ξ, η) = E(w(ξ),w(η)); F(ξ, η) = F(w(ξ),w(η));
E ′(ξ, η) = E(w(ξ),w1(η)); F ′(ξ, η) = F(w(ξ),w1(η)); (3.232)

E ′′(ξ, η) = E(w1(ξ),w(η));

ϕ1(ξ) = ϕ1(t)w
′(ξ); (3.233)

ϕ2(ξ) = ϕ2(t)w
′(ξ); (3.234)

P1(η) = P(w1(η)); P(η) = P(w(η)). (3.235)

The integral equations (3.230) and (3.231) are solved numerically by the method
of mechanical quadratures under the assumption assuming that the functions ϕ1(ξ)
and ϕ2(ξ) have square-root singularities, i.e. ϕ1(ξ) = v1(ξ)/

√
1 − ξ 2, ϕ2(ξ) =

v2(ξ)/
√
1 − ξ 2, ν1(ξ) and ν2(ξ) are continuous on the segment |ξ | ≤ 1. As a result

of application of the Gauss quadrature formulas to these equations, we arrive at the
system of 2n real linear algebraic equations for 2n unknowns v1(ξk) and v2(ξk):

1

n

n∑

k=1

{
ReE(ξk, ηm) v1(ξk) − ImF ′(ξk, ηm) v2(ξk)

} = ReP1(ηm) + f0ReP1(ηm),

m = 1, . . . , n − 1; (3.236)

1
n

n∑

k=1

{ [
k∗ImE ′′(ξk, ηm) + f0ReE(ξk, ηm)

]
v1(ξk)+

+ [ReF(ξk, ηm) − f0ImF ′(ξk, ηm)
]
v2(ξ)

} = ImP(ηm) + f0ReP1(ηm),

m = 1, . . . , n − 1;
(3.237)
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n∑

k=1

[
(−1)k tg

(
2k − 1

4n
π

)
v1(ξk)

]
= 0; (3.238)

n∑

k=1

[
(−1)k tg

(
2k − 1

4n
π

)
v2(ξk)

]
= 0, (3.239)

where n is the number of nodes in the segment of integration |ξ | ≤ 1.
By using the solution of the system of equations (3.236)–(3.239), we find the

mode I stress intensity factor K I at the end of the open section of the crack and the
mode II stress intensity factor K II at the crack tip

KI = p0
√
2πa

1

n

n∑

k=1

[
(−1)kctg

(
2k − 1

4n
π

)
v1(ξk)

]
; (3.240)

KII = −p0
√
2πa

1

n

n∑

k=1

[
(−1)kctg

(
2k − 1

4n
π

)
v2(ξk)

]
. (3.241)

The absence of contact of the crack faces is controlled by condition (3.218). By
the change of variables, this condition is reduced to the form [53]

1 + æ

2Gn

n∑

k=1

{

v1(ξk)

[

arccos η + 2
√
1 − η2 +

n−1∑

m=1

Tm(ξk)Um−1(η)

m

]}

< 0,

|η| < 1.
(3.242)

If condition (3.242) is not satisfied on some segments of the crack contour, then
this means that the crack faces are in contact. Hence, the solution of the integral
equations can be found by the method of successive approximations.

Stress intensity factors. The numerical analyses were carried out for the follow-
ing types of contact of the faces of edge rectilinear cracks (Fig. 3.22): (1) smooth
contact under the assumption that, for some locations of load on the boundary of the
half-plane in the vicinity of the crack mouth, the crack can be partially or completely
closed; (2) contact with friction under the assumption that contact is realized over
the entire crack length.

Smooth contact of crack faces. The numerical analysis was performed for dif-
ferent values of the angles of inclination of the crack to the edge of the half-plane
(β = π/6, π/4, 3π/4, 5π/6, 8π/6), for two values of the relative crack length (ε
= l/a = 0,5; 1,0), and the friction coefficient in contact between the bodies f
= 0.1. We established the ranges of the parameter λ = x0/a characterizing the
location of the contact load (counterbody) for which the crack is completely or
partially closed. The plots of the dependences of the normalized stress intensity
factors FII(λ, β, f, ε) = KII(λ, β, f, ε)

/(
p0

√
πa
)
on the location of the contact

load (on λ) are shown in Figs. 3.23 and 3.24.
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Fig. 3.23 Dependence of the normalized SIF FII(λ) on the location of the contact load relative to
the crack mouth for different angles between the crack and the boundary of the half-plane: a β =
5π/6, b β = π/6; f = 0.1; (——) contact of faces over the entire length; (– – –) partial contact

Fig. 3.24 Dependence of
the normalized SIF FII(λ) on
the orientation (angle β) of
the edge crack

The analysis of the curves in Fig. 3.23 enables us to make the following conclu-
sions:

• the increase in the relative length ε = l/a of the crack from 0.5 to 1.0 leads, in
general, to the increase in the SIF |KII| ; at the same time, for both inclination
angles of the crack, the quantity max|KII| becomes almost twice larger;

• for given values of the parameters f, ε, and β, in the case of motion of the contact
load from the right to the left, the crack is initially open and then partially open; at
the same time, in the case of motion of the load over the crack mouth and behind
it, the crack is completely closed; moreover, the cracks oriented at acute angles
(β < π/2) close faster (for larger λ) than the cracks making blunt angles (β > π/2)
with the direction of the Ox-axis (to the direction of tangential forces in contact
between the bodies).

Note that, in both cases (β = π/6 and β = 5π/6), in the zero-order approximation
of the iterative process, it was assumed that, as the load moves from the right to the
left, the crack closes from its tip.

The analysis of the curves presented in Fig. 3.24 demonstrates that:

• for acute (β < π/2) and blunt (β > π/2) angles of inclination of the crack to the
edge of the half-plane, max |KII| is attained for absolutely different locations of
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Fig. 3.25 Dependence of the normalized SIF FII on the location of the contact load (λ) for various
coefficients of friction f c between the crack faces; f = 0.1; ε = l/a = 1.0

the contact load relative to the crack mouth but their values do not exhibit any
noticeable difference;

• the SIF FII(λ) changes its sign as the contact load moves over the crack mouth.

Contact of the crack faces with friction. The numerical calculations were per-
formed under the assumption that the crack faces are in contact with friction along
the entire crack length (l* = 0; see Fig. 3.22) if the contact load is located near the
crack mouth (|λ| ≤ 2). In this case, the boundary conditions of the problem take the
form (3.190), (3.191), and (3.219)–(3.221).

The problem is reduced to the solution of the singular integral equations (3.230)
and (3.231). The discrete analog of these equations has the form of the system of
linear algebraic equations (3.236), (3.237).

We now seek the mode II stress intensity factor K II at the crack tip on the basis
of the solution of this system given by relation (3.241).

In Figs. 3.25, 3.26, 3.27 and 3.28, we present the dependences of the normal-
ized stress intensity factors FII = KII/

(
p0

√
πa
)
on the parameter λ specifying the

location of the contact load for various values of the friction coefficients in contact
between the bodies (f = 0, 0.05, 0.1, 0.15, and 0.2), relative crack lengths (ε = l/a =
0.3, 0.5, 0.7, 1.0), angles made by the crack with the boundary of the half-plane (β
= 5π/6, 3π/4, 2π/3, π/4, π/6), and friction coefficients in contact between the crack
faces (f c = 0, 0.05, 0.1, 0.15, 0.2).

The analysis of the curves presented in Fig. 3.25 shows that the presence of friction
between the crack faces strongly decreases the SIF at the crack tip independently
of its orientation. Thus, for the friction coefficient f c = 0.1, the quantity max |KII|
decreases, on the average (for β = π/6 and β = 5π/6), by 22%, as compared with the
case f c = 0 and by 48% if the friction coefficient increases to f c = 0.2. At the same
time, the increase in the friction coefficient f under contact loading (in the case of
contact between the bodies) weakly affects the SIF |KII| (Fig. 3.26).

The dependences of the SIF FII on the crack length for different locations of
the contact load (Fig. 3.27) indicate that FII strongly increases as the crack length
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Fig. 3.26 Dependence of the normalized SIFFII on the location of the contact load (λ) for different
friction coefficients f in the case of contact between the bodies; ε = 1.0; f c = 0.2

Fig. 3.27 Dependence of the normalized SIFFII on the location of the contact load (λ) for different
relative crack lengths ε = l/a; β = π/6; f = 0.1; f c = 0.2

Fig. 3.28 Dependence of the normalized SIFFII on the location of the contact load (λ) for different
angles β between the crack and the boundary of the half-plane; f = 0.1; ε = 1.0; f c = 0.2
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increases (for fixed values of the parameters β, f, and f c). In particular, as the relative
crack length increases from ε = 0.3 to ε = 1.0, the maximum value of the SIF FII

becomes almost six times higher.
The analysis of the curves plotted in Figs. 3.25 and 3.26 shows that the location

of the contact load (the value of λ*) for which the SIF FII attains its maximum
remains practically unchanged for various values of the friction coefficients f and
f c. The variations of the crack length also strongly affects λ* (Fig. 3.27), while the
changes in the angle of orientation of the cracks β exerts a significant influence on
the location of the load for which the value max |FII(λ)| is attained (Fig. 3.28). As
shown in Chap. 4, this circumstance is of high importance for the prediction of the
angles of formation of the edge cracks in the elements of rolling couples.
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Chapter 4
Rolling Contact Fatigue

Abstract This chapter contains the results of investigations of the fracture processes
(paths of crack propagation) for bodies under the conditions of rolling (rolling with
sliding). These results were obtained by using the model proposed in Chap. 2, the
solutions of singular integral equations for the corresponding problems, and also the
results of evaluation of lifetime under the conditions of contact fatigue.We study and
describe the specific features of formation of the typical defects usually observed in
rolling bodies, such as pitting, spalling, squat (“dark spot”), checks depending on
the operating parameters of the analyzed rolling couple and the characteristics of
cyclic crack growth resistance of the corresponding materials. We present examples
of evaluation of the residual contact durability of rail, wheel, and roll steels according
to the criteria of pitting and spalling formation. The contact fatigue curves (i.e., the
dependences of the number Nf of rolling cycles on the maximum value of contact
pressure p0) are plotted by using the criteria of pitting or spalling formation on the
rolling surfaces. We also give some recommendations useful for the engineering
practice.

The model proposed in the previous sections and the solutions of singular integral
equations (SIE) are used for the investigation of the processes of fracture in rolling
bodies and for the evaluation of their lifetimes under the conditions of cyclic contact.
We now determine the specific features of formation of typical defects, such as
pitting and spalling, squat (“dark spots”), and checks in rolling bodies depending on
the operation parameters of rolling couples and on the characteristics of cyclic crack
growth resistance of materials.

We consider the case of unidirectional rolling with slip. The body damaged by
cracks is modeled by an elastic half-plane with cracks (cuts) and the contact action of
the counterbody is modeled by the repeated motion of Hertzian normal forces with
tangential component along the edge of half-plane (Fig. 4.1). In the contact section,
these forces are described by the formula

σy − iτxy = −p(x) − iq(x) = −p0(1 + i f )

√
a2 − (x − x0)

2

a
, |x − x0| ≤ a, y = 0,

(4.1)
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Fig. 4.1 Computational schemes of the two stages of pit formation: a stage of shear, b opening
stage; B is the direction of the motion of the counterbody; f is the coefficient of friction between
contacting bodies; Lsl , Lst , and Lop are the sections of slipping with friction, sticking, and opening
displacement (the crack faces are not in contact), respectively

where 2a is the length of the contact section and p0 is the maximum pressure in the
central part of the contact section. Outside the contact section, forces are equal to
zero.

4.1 Rolling Under Boundary Lubrication Conditions.
Pitting Formation

Pitting appears practically on the surfaces of all elements of the rolling pairs. In
the engineering practice, their contact lifetime is determined by the depth of the
pits in rolling bodies and by the number of cycles prior to their appearance. As
early as in 1935, Way [99] assumed that pitting appears only in the presence of
lubricants in the contact zone between rolling bodies. Under this assumption, the
process of growth of edge cracks in rolling bodies is studied under the conditions of
boundary lubrication. In the computational model, it is assumed that the thickness
of lubricating layer is equal to zero. In other words, this layer does not separate the
rolling bodies but significantly decreases the friction forces between the bodies. The
lubricant is regarded as an incompressible liquid. It is also assumed that the rolling
body damaged by cracks is a driven body. Note that the edge cracks oriented in the
direction of motion of the counterbody (contact load) are frequently initiated in this
body. This promotes the penetration of lubricants into these cracks in rolling. In this
case, the lubricant reduces the friction forces between the crack faces in the stage
of their propagation by the mechanism of shear (Fig. 4.1a). Later, in the process of
rolling, the lubricant may separate the crack faces and even wedge them out. In this
case, we observe the transition from fracture by themechanism of shear to fracture by
mechanism of normal opening. Thewedging action of the lubricant [or another liquid
(medium)] upon the crack faces is modeled either uniformly [14, 72] or linearly [40]
by distributed normal pressure acting along the entire crack length (Fig. 4.1b).

Hence, in the computational model, it is assumed that the growth of an edge
rectilinear crack (inclined to the side of motion of the counterbody) by the mode II
mechanism in the direction of its continuation is the first stage (onset) of the process
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of pitting formation. The second stage of crack propagation by themode Imechanism
takes into account the influence of lubricants penetrating into the crack and creating
pressure on its faces.

4.1.1 Edge Crack in Contact Zone Under Transverse Shear
Conditions

The available numerous experimental data [11, 47, 55, 65, 81, 99, 102] demon-
strate that shallow surface macrocracks are frequently initiated in rolling bodies
(race tracks). As a rule, they grow rectilinearly in the direction (plane) opposite to
the action of tangential contact forces in the damaged body. As the main cause of
development of these cracks, we can mention significant compressive contact forces
induced by the action of the counterbody. The theoretical analyses [13, 15] demon-
strate that the SIF K I < 0 at the tips of these cracks. Moreover, the τθ-criterion
(formula (2.21)) implies that, in this case, the angle of initial deviation is θ* = 0. In
other words, the crack grows rectilinearly. In the general case, three types of contact
conditions can be realized on the crack faces in the case of motion of the counterbody
along the boundary of the body (half-plane): the absence of contact (Lop), slip of the
crack faces with friction (Lsl), and sticking (Lst) (Fig. 4.1a). In what follows, we
consider these cases by using the approaches presented in Chaps. 2 and 3. The solu-
tion of the corresponding contact problems, the determination of the stress intensity
factors (SIF), and the analysis of the specific features of contact of the crack faces
are reduced to the solution of the system of Eqs. (3.204), (3.205) whose right-hand
side P(η) (3.208) is formed by the Hertzian load with regard for condition (3.160).
We solve the system of these equations by using the already described method of
mechanical quadratures with the use of iterative procedures in order to determine the
ends of the sections of contact of the crack faces [25, 34, 72, 73].

Contact of crack faces along the entire crack length: slipping with friction
and sticking. First, we consider the case of full contact of the faces of edge crack
(the crack faces are in contact along the entire length) with friction. In this case, the
possibility of sticking is not neglected, i.e., condition (2.10) may be satisfied, which
could be guaranteed, in particular, by high friction between the faces of shear crack
(high values of f c).

To get the complete picture of changes in the stress-strain state (stress intensity
factors) at the crack tip for a single passage of amodel contact load along the boundary
of the half-plane (in a single contact cycle), we plot the dependence of the SIF K II

on the parameter λ = x0/a specifying the location of the contact load (Fig. 4.1) with
regard for the values of typical operating parameters of rolling couples.

Note that the SIFs K I and K II are normalized (here and in what follows) by the
formula F = K/(p0

√
πa).

Among the parameters that give an adequate description of the operating char-
acteristics of rolling couples in the two-dimensional formulation of the problem,
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Fig. 4.2 Dependences of the normalized SIF FII on the location of the counterbody for different
values of the: a friction coefficient f c between the crack faces; b friction coefficient f between the
contacting bodies; c relative crack length ε = l0/a; d angle β of crack orientation

we can choose the following characteristics: the maximum value of contact load
p0, the length of the contact section 2a, the coefficient of sliding friction f between
the rolling bodies; the friction coefficient f c between the crack faces; the angle β

of orientation of shallow shear edge macrocracks typical of the rolling bodies; the
relative crack length ε = l0/a, etc. In view of the possibility of investigation of rolling
couples, such as wheel-rail couples and rolls of cold-rolling mills, the indicated
parameters are chosen within the following ranges: f = 0…4; f c = 0…0.7; β =
140°…170° (β̄ = 180° − β = 10°…40°), and ε = 0.1…3.0.

To study the influence of these parameters on the stress strain state (SSS) at the
crack tip, we plot the dependences FII(λ) (Fig. 4.2) by adding the data presented
in Table 4.1 with the maximum and minimum values of SIF FII, the values of its
range �FII = FIImax − FIImin, and the values of λmin and λmax corresponding to the
locations of the counterbody for which the maximum and minimum values of SIF
FII are attained within a single rolling cycle (one passage of the contact load along
the boundary of the half-plane near the crack mouth).
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Table 4.1 Dependences of
the normalized SIF range
�FII, its extreme values
FIImax and FIImin, and
locations of the counterbody
(λmax, λmin) for which they
are realized, on the
parameters f, f c, β, and ε

�FII FIImin FIImax λmin λmax

β f c = 0.2, f = 0.1, ε = 0.5

140° 0.102 −0.046 0.056 0.35 −1.60

150° 0.124 −0.046 0.078 0.45 −1.50

290° 0.128 −0.041 0.087 0.50 −1.45

170° 0.096 −0.026 0.070 0.55 −1.45

ε f c = 0.2, f = 0.1, β = 160°

0.1 0.045 −0.013 0.032 0.90 −1.10

0.3 0.092 −0.026 0.066 0.70 −1.25

0.5 0.128 −0.041 0.087 0.50 −1.45

0.7 0.157 −0.056 0.101 0.35 −1.65

1.0 0.194 −0.079 0.115 0.05 −1.95

f c ε = 0.5, f = 0.1, β = 160°

0.0 0.206 −0.083 0.123 0.45 −1.35

0.1 0.161 −0.058 0.103 0.50 −1.40

0.2 0.128 −0.041 0.087 0.50 −1.45

0.3 0.103 −0.030 0.073 0.55 −1.50

f f c = 0.2, ε = 0.5, β = 160°

0.0 0.097 −0.040 0.057 0.50 −1.45

0.1 0.128 −0.041 0.087 0.50 −1.45

0.2 0.159 −0.042 0.117 0.55 −1.45

0.3 0.191 −0.044 0.147 0.55 −1.40

We now analyze the plots presented in Fig. 4.2 and the values of SIF FII from
Table 4.1 obtained by using the solutions of Eqs. (3.204) and (3.205) for the formu-
lated problems. It is seen that if the friction coefficient f c (Fig. 4.2a) increases, then
themaximumabsolute values of the SIF (FII) monotonically decrease. As a result, the
SIF range (�FII = FIImax − FIImin) becomes mush smaller. This, in turn, decreases
the hazard of fracture (by the shear mechanism). Thus, the subsequent increase in
f c by 0.1 causes the a decrease in the relative values of FIImax by about 16%, and
|FIImin| becomes smaller by more than 28% (Table 4.1, Fig 4.2a). A similar increase
in the friction coefficient f causes an increase in FIImax by 27%, on the average (see
Table 4.1, Fig 4.2b) but almost does not affect the values of FIImin.

The increase in the relative crack length (Table 4.1, Fig 4.2c) results in a noticeable
elevation of the maximum absolute value of the SIF FII as a result of the left shift
(in the direction of motion of the contact load) of the location of counterbody for
which this extremum is realized. This fact implies that the hazardous locations of
the contact load always move in the direction of crack growth. The variations of
the angle of inclination of the shear crack (Table 4.1, Fig. 4.2d) cause a noticeable
growth of the maximum absolute values of FII. However, instead of a monotonically
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increasing dependence observed in the previous case, we see a jump at β = 160°,
which enables us to conclude that this angle plays a predominant role in the analyzed
range of the angle β.

We also add that, in the case of contact loading moving from the right to the left,
the range of locations of the counterbody for which the crack faces are completely
stuck (this state of the crack appears if the SIF FII remains equal to zero during
the motion of the counterbody, i.e., when the crack faces are rigidly connected and
prevent the formation of stresses at the crack tip, if we do not take into account
the loading history) enlarges as the friction coefficient f between the rolling bodies
becomes lower and diminishes as the friction coefficient f c between the crack faces
decreases.

Hence, for the analyzed range of the friction coefficients f and f c, it is possible to
assert that if both parameters simultaneously increase, then theymutually compensate
their influence on the range of SIFFII (see Table 4.1) and on the range of the locations
of the counterbody forwhich the crack faces can be restrained (Fig. 4.2a, b). The range
of locations of the counterbody for which the crack faces are completely restrained
(stuck) becomes larger as the relative crack length ε decreases and the angle of crack
orientation β increases.

Maps of contact of the crack faces: slipping with friction and sticking. We now
perform a comprehensive analysis of the FII(λ) dependences presented in Fig. 4.2a
for a more detailed investigation of the kinetics of contact of the faces of an edge
shear crack starting from slipping with friction to sticking. For this purpose, the maps
of sticking and slipping are plotted for different values of the friction coefficient f c
in Fig. 4.3. These maps are plotted on the coordinates λ–η, where parameter η is a
dimensionless argument in the parametric equation t = w(η) = l(1 −η)/2; |η| ≤ 1,
which describes the crack contour.

As can be expected, the elevation of the friction coefficient f c between the crack
faces leads to a significant enlargement of the sections of sticking (Fig. 4.3). In all
analyzed cases, if the counterbodymoves from the right to the left, then the process of
sticking of faces of the shear crack starts from its mouth, as soon as the counterbody
begins to cover the mouth (this location corresponds to λ = x0/a = 1.0). The effect
of sticking begins to disappear also from the crack mouth. The lower the friction
coefficient f c, the higher the rate of this process. Note that the sticking of the faces is
also preserved in the case where the counterbody has already passed the mouth and
is located at a certain distance from the crack. Thus, for f c = 0.3, the phenomenon
of sticking completely disappears only for λ = −1.4.

The problem of contact of the faces of shear edge cracks under the action of a
contact load moving on the body boundary was studied by numerous researchers
(in particular, by Bower [10], Keer and Bryant [67]). Hence, we now perform the
results of comparative analysis of our results with the results obtained in the cited
works. In Fig. 4.4, we present the dependences of FII(λ) obtained for the case of
contact sliding of the faces of edge crack with friction (over the entire crack length),
including the presence of sticking presented, taken from [10, 67] (dashed lines) and
obtained in the present work (solid lines).
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Fig. 4.3 Dependences of the
SIF FII and the sections of
sticking on the location of
the counterbody for different
values of the friction
coefficient f c; ε = l0/a = 0.5,
f = 0.1, β = 8π/9

The comparison of our results with the data presented in Bower’s work shows
that they are in satisfactory agreement everywhere except the range λ = −0.5…1.0.
According to our calculations, the complete sticking of the crack faces is observed
within the range λ = 0.5…1.0. Therefore, the SIF FII decreases to zero with gradual
renewal for λ = −0.5…0.5, where the section of sticking begins to decrease from the
tip. On the contrary, Bower fixed the values of SIF FII in the entire analyzed range
according to its maximum value attained at the point λ = –0.5. This means that the
applied mathematical model can only reveal the presence of a section with sticking
but is unable to determine the SIF value in this zone. Unlike the previous case, Keer
and Bryant, parallel with the determination of the section of sticking of the crack
faces found the SIF FII values in these sections, which almost completely coincide
with our results for all locations of the contact load and all considered relative crack
lengths ε.
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Fig. 4.4 Comparison of our
results (solid lines) with the
available literature data
(dashed lines) in the case of
full contact of the crack faces
with friction and with regard
for the sections of sticking;
β = 155°

Characteristic orientations and critical lengths of the edge crack. Numerous
available experimental data testify that shallow subsurface edge macrocracks fre-
quently appear in rolling bodies (on the race tracks). These cracks, as a rule, prop-
agate rectilinearly in the direction opposite to the direction of action of tangential
contact forces on the surface of the damaged body. As the main cause of growth
of these cracks, we can mention significant compressive contact stresses induced
by the action of the counterbody. The theoretical analyses carried out in [13, 15]
also demonstrated that, at the tips of these cracks in the compression zone, we have
K I < 0. Moreover, the τθ-criterion implies that θ* = 0, i.e., the crack propagates recti-
linearly. Thus, it is logical to assume that the angle of propagation of the shear crack in
the elements of rolling couples depends on the operating parameters and mechanical
properties of materials of the couples(friction in contact between the rolling bodies
and between the crack faces; direction of rolling, presence of the medium; values and
distribution of contact pressures, etc.). In turn, this angle strongly affects the contact
durability, and the depth of pits (dimensions of pitting) on the rolling surface. The
researchers mainly determine this angle on the basis of the available engineering or
experimental data. We now try to determine this angle theoretically (numerically).

We now assume that the most favorable direction of growth of the shear crack is
the direction (angle β = β*) guaranteeing the maximum range of the normalized SIF
FII (i.e., �FII) under the conditions of repeated unidirectional motion of the load
over the surface of the body damaged by the crack. Thus, the angle β* is given by
the formula

∂(�FII(β))

∂β

∣∣∣∣
β=β

∗
= 0. (4.2)

Hence, the problem of determination of the angle (β*) most favorable (charac-
teristic) for the growth of a shear edge crack is reduced to the determination of the
extremum (maximum) of the function �FII(β).
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Fig. 4.5 SIF range �FII
established with regard for
the sections of slipping with
friction, and sticking of the
crack faces depending on the
angle β of crack orientation
for different values of the:
a friction coefficient f c
between the faces; b friction
coefficient f between the
rolling bodies; c relative
crack length ε = l0/a

Analyzing the dependences presented in Fig. 4.5, we conclude that the increase
in the friction coefficient f c between the crack faces promotes an increase in the
angle β* for which the maximum of �FII is attained. Moreover, the increase of the
friction coefficient f between the contacting bodies causes an insignificant decrease
in the angle β for which the maximum of �FII is attained. Further, by analyzing the
specific features of the behavior of the SIF range FII depending on the coefficients
f and f c (see Table 4.1), it is possible to conclude that the higher the values of the
friction coefficient f c, the smaller the sizes of the obtained defects. Moreover, the
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time required for their appearance becomes much longer. For the friction coefficient
f between the contacting bodies, we observe the opposite situation.

The increase in the relative crack length ε has almost no effect on the angle β*

(to a certain extent, this confirms the assumption about the rectilinear growth of the
shear macrocrack) and increases it only by several degrees. At the same time (see
Fig. 4.2c), the range of the SIF FII significantly increases.

The numerical results presented in Fig. 4.5 demonstrate that themaxima of the SIF
range�FII(f, f c, ε) are attainedwithin a small range of crack angles (β= 150…160°).
In other words, the angle β = β* ≈ 155° is stable under the changes of the parameters
f, f c, and ε. In addition, the angle β* established in this way is in good agreement
with the engineering data. Hence, we assume that this angle is characteristic (most
favorable) for the propagation of shear edge cracks in rolling bodies.

Similarly, as in the case of evaluation of the angle β*, we can find the critical
values of the relative length ε* of a shear edge crack for which max �FII is attained.
In this case, the condition used to find ε* takes the following form:

∂(�FII(ε))

∂ε

∣∣∣∣
ε=ε

∗
= 0. (4.3)

The dependences �FII(ε) presented in Fig. 4.6 enable to determine the quantity
ε* corresponding to the maximum SIF range �FII. Hence, the indicated values of
the relative crack length guarantee the highest rate of its growth.

As follows from Fig. 4.6a, the higher the friction coefficient f c between the crack
faces, the larger the relative crack length ε* guaranteeing the maximum of �FII and
the increase in the range of lengths (ε) for which �FII monotonically increases. As
the friction coefficient f between the contacting bodies increases, the relative crack
length ε* corresponding to the maximum of �FII decreases.

The dependences presented in Fig. 4.6 demonstrate that the probability of growth
of macrocracks by the shear mechanism increases with the friction coefficient f
(Fig. 4.6b) but decreases as the friction coefficient f c (Fig. 4.6a) increases. The
influence of variations of the angle of inclination of a shear crack in the dependence
�FII(ε, β) confirms the advantage of angles within the range β = 150…160° in
supporting the growth of shear cracks (this is also demonstrated in Fig. 4.5). In
addition, for these angles, �FII attains its maximum for the least possible relative
length ε. This means that these values are most favorable in the shear stage of growth
of the macrocrack. Hence, these angles are preferable for the numerical analyses.
They are regarded as basic parameters in our investigations.

Summarizing the analysis of the curves presented in Fig. 4.6, we can make a
conclusion that the maximum values of the SIF range �FII that controls the process
of growth of shear crack are attained within the range of relative crack lengths ε*

= 2.1…2.6, i.e., in a quite narrow range in view of the considered ranges of the
parameters f, f c, and β.

General conditions of contact of the crack faces: normal opening, slipping
with friction and sticking. We now describe the iterative procedure (algorithm)
used in this case for the determination of the boundaries of the sections of contact of
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Fig. 4.6 Dependences of the
SIF �FII range on the
relative crack length ε =
l0/a for different values of
the: a friction coefficient f c
between the crack faces;
b friction coefficient
f between the contacting
bodies; c angle β of crack
orientation

the crack faces. It is assumed [25, 72, 73] that, in the case of motion of the contact
load along the boundary of the half-plane, the conditions of contact slipping with
friction and sticking are realized on the crack faces, and only one open (inner or edge)
section Lop arbitrarily located along the crack (the crack faces are not in contact) is
formed. As a criterion for the determination of the location of this section, we use
the condition according to which the SIF K I should be positive on its ends (K I > 0).

The algorithm used for the determination of the ends of an open segment of the
edge crack has three parts: preliminary fixing of location of the open section of the
crack; determination of its left endwith regard for the sections of slippingwith friction
section in the case of the edge location of the open section, and the determination
of its right (l +) and left (l –) ends in the case of internal location. In the first step of
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the algorithm, it is assumed that the open part is located at the right end of the crack.
Then we fix its right coordinate in the mouth and change the left coordinate in order
to guarantee the validity of the condition K−

I > 0, i.e., K I(l –) > 0. The change in the
sign of K−

I from positive to negative indicates that left end of the open section of the
crack is attained. We fix its coordinate. This completely determines the location of
the open part of the crack. If this condition is not satisfied even in the first step of the
algorithm, then we conclude that our assumption is wrong and the open part should
be sought inside the crack. To do this, we fix the location of the left boundary (l –)
at the crack tip and gradually change the location of the right end (l +) starting from
the mouth until the condition K+

I > 0 (K I(l +) > 0) is satisfied. This means that the
right boundary attains the open part of the crack. We fix its coordinate. In the case
where this condition is not satisfied along the entire crack length, we assume that the
open section is absent and the crack is completely closed (slipping with friction and
sticking). Finally, if we have the coordinate of the right boundary of the open part,
then we move its left boundary toward the crack tip starting from the right end, until
we get K−

I > 0, i.e., to the left end of the open part. In this way, we determine the
location of the open section inside the crack. Note that, in the proposed algorithm,
the left and right ends of the open part of the crack are understood as the ends located
on the sides of the crack tip and crack mouth, respectively (see Fig. 4.1).

Characteristic orientations and critical lengths of edge crack. We now consider
the problem of determination of the characteristic orientation and relative critical
length of shear edge cracks in more detail. For this purpose, we study the function
�FII(ε, β) for the presence maximum in the parameters ε and β. If this extremum
is realized within the analyzed ranges of these parameters, then the corresponding
pair (ε, β) realizing this maximum is just the required solution. Hence, generalizing
conditions (4.2) and (4.3), we arrive at the following system of equations:

⎧
⎪⎪⎨

⎪⎪⎩

∂�FII(β, ε)

∂β
= 0,

∂�FII(β, ε)

∂ε
= 0.

(4.4)

Therefore, the analyzed problem is reduced to the determination of the extremum
(maximum) of a function of two variables. In Figs. 4.7 and 4.8, we show the surfaces
graphically illustrating the results of numerical solution of this problem. We also
note that, in order to find the values of function FII(λ, ε, β, f, f c), it is necessary to
solve the problem posed above under the condition of contact with friction of the
crack faces along the entire crack length. The absence of sticking is controlled by
condition (3.197). However, in the analyzed case, it is neglected.

As follows from Fig. 4.7, all depicted surfaces have clearly pronounced extrema,
which, in turn, ensures the uniqueness of a pair of parameters (ε*, β̄∗ = π–β*).
Moreover, for relative crack length, this extremum is most often attained within the
range ε = 2.0…2.5. One more local maximum appears within the range ε = 0.1…1.0
only for f c ≥ 0.2.
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Fig. 4.7 Dependence of the SIF �FII range on the relative crack length ε = l0/a and on the
complementary angle β̄ = π−β for various values of the friction coefficient f c; f = 0.1

Fig. 4.8 Dependence of the SIF �FII range on the relative crack length ε = l0/a and on the
complementary angle β̄ = π−β for different values of the friction coefficient f; f c = 0.1
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Table 4.2 The relative critical length ε* and the complementary angle β̄∗ guaranteeing themaximal
value of �FII depending on the friction coefficients f and f c

a ε∗ = l∗0/a β̄∗ =
π − β∗

max �FII b ε∗ = l∗0/a β̄∗ =
π − β∗

max �FII

f c f = 0.1 f f c = 0.1

0.0 2.1 26° 0.4212 0.0 2.3 22° 0.3445

0.1 2.3 22° 0.3445 0.1 2.3 22° 0.3445

0.2 2.4 15° 0.2835 0.2 2.2 24° 0.3417

0.3 2.5 10° 0.2556 0.3 2.0 26° 0.3379

Based on the dependences�FII
(
ε, β̄

)
depicted in Figs. 4.7 and 4.8, we constructed

Tables 4.2a, b for a pair of values of the relative length and orientation of the shear
crack (ε*,β̄∗) satisfying condition (4.4) and, hence, creating the required configuration
of the parameters for the fastest (easiest) growth of shear cracks in the material. In
order to study the influence of behavior of the analyzed parameters on the maxi-
mum range of normalized SIF FII, the tables also contain the values of the quantity
max�FII = �FII

(
ε∗, β̄∗). Recalculated to max�KII, these data determine the actual

conditions of crack initiation and propagation according to the shear mechanism.
The results presented in Table 4.2 imply that, as the friction coefficient f c between

the crack faces increases, the relative crack length ε* guaranteeing the maximum of
�FII also increases, whereas the complementary angle β̄∗ decreases. As can be
expected, the SIF range �FII strongly decreases as f c increases. Note that the angles
of initial crack growth β̄∗ given in the table agree with the data obtained by Way
under the laboratory conditions [99].

The dependences presented in Fig. 4.8 reveal a less pronounced relationship
between the maximum value of the SIF range �FII and the coefficient of fric-
tion f between the rolling bodies than similar dependences for the coefficient f c
(Fig. 4.7). If we analyze the qualitative aspect of changes in the pair (ε*,β̄∗), then we
reveal an absolutely opposite trend: as the friction coefficient f increases, the relative
length ε* decreases, while the complementary angle β̄∗, on the contrary, increases
and max �FII remains almost constant.

Summarizing, we conclude that the coefficient of friction f c between the crack
faces strongly affects the maximum value of the SIF K II in the case of motion of the
contact load along the edge of the half-plane (over the surface of the rolling body):
Its increase leads to a significant decrease in the SIF |K II| and in max�K II. Moreover,
f c noticeably affects the direction (angle β̄∗) of growth of the edge macrocrack. The
coefficient of friction between the rolling bodies weakly affects max�K II and the
initial direction of crack growth (see Table 4.2).

Maps of the crack faces contact: normal opening, slipping with friction and
sticking. Based on the values of β̄∗ presented in Table 4.2, we construct the maps
of contact between the crack faces and a function FII(λ) that take into account the
phenomenon of partial contact (partial opening displacement of the crack faces) for
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Fig. 4.9 Maps of the crack faces contact and the SIF FII depending on the location of counterbody
for various values of the friction coefficient f c between the crack faces; f = 0.1; ε = 1.0; the values
of the corresponding characteristic angles β̄∗ are taken from Table 4.2a

different values of the friction coefficients f and f c. Here, it is assumed that the
parameter that describes the relative crack length is ε = 1.0.

We now analyze the specific features of the behavior of FII caused by the presence
open sections (partial contact) between the faces of the shear crack in the course of
motion of the counterbody (the changes in λ). To this end, in Figs. 4.9 and 4.10, we
present the plots of the function FII(λ) (dashed lines) for the case of full contact of
the crack faces with friction (the section of sticking are neglected). The dependences
depicted in Fig. 4.9 show that the increase in the friction coefficient f c between the
crack faces (in the case where the angle β̄ = β̄∗ is determined from condition (4.4),
and the counterbody moves from the right to the left) makes the contact section
smaller for all locations of the contact load to the left of the crack mouth (the range
of negative values of λ). However, in the case of changes in the coefficient of friction
f between the contacting bodies (Fig. 4.10), we observe the opposite trend: As the
indicated coefficient increases, we observe a noticeable enlargement of the contact
section for the same locations of the counterbody; at the same time, this zone remains
practically constant if the counterbody is located to the right of the crack mouth
(interval of positive values of λ).

Comparing the results obtained for various types of contact of the crack faces, we
conclude that the difference between the results obtained for the cases of partial and
full contact of the faces (the case of full contact of the crack faces is illustrated by the
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Fig. 4.10 Maps of the crack faces contact and the SIF FII depending on the location of the coun-
terbody for different values of the friction coefficient f between the contacting bodies; f c = 0.1;
ε = 1.0; the values of the corresponding characteristic angles β̄∗ are taken from Table 4.2b

dashed lines in Figs. 4.9 and 4.10) is insignificant in all analyzed cases and can be
observed mainly for large values of the friction coefficient f c when the counterbody
is located to the right of the crack mouth. In this case, the extreme values of the SIF
�FII are not affected.

It is worth noting that, in analyzing the kinetics of contact of the faces of shear
edge macrocracks presented in Figs. 4.9 and 4.10, we can conclude that, for the
indicated direction of motion of the counterbody, the crack always starts to close
from the mouth (the only exception is the case of smooth contact (f c = 0) in which
the crack is simultaneously closes in the mouth and also, for a while, at the tip).
Moreover, the higher the friction coefficient f c between the crack faces, the faster the
process of closing. However, the behavior of the friction coefficient f exerts almost
no influence on the rate of the crack closure. After the full passage of the counterbody
over the crack mouth (i.e., for λ < −1), the crack immediately begins to open from
the mouth.

Finally, it is now reasonable to recall that the maps of contact of the crack faces
in Figs. 4.9 and 4.10 are plotted not for the same angle β but for different angles β

= β̄∗ (Table 4.2). Hence, these maps illustrate the kinetics of opening displacements
of the crack faces just in these cases depending on the friction coefficients f and f c.

We now consider a more general case of the behavior of shear edge cracks where
the following contact conditions on the crack faces are realized: normal opening
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Fig. 4.11 Maps of the crack faces contact and the SIF FII depending on the location of the coun-
terbody

displacement of the faces, slipping with friction, and sticking. For this purpose, we
plot the corresponding contact maps. The obtained dependences give more possibil-
ities to analyze the behavior of shear edge cracks in a single cycle of contact of the
bodies and enable us to estimate the relationship between FII(λ) and the conditions
of opening displacement, contact, and sticking of the faces.

The plots of the functions FII(λ) for various values of the friction coefficients f
and f c and the corresponding contact maps for the inclination angle β ≈ β* = 5π/6
are presented in Fig. 4.11. As follows from the results presented in Fig. 4.11a, c that,
for f c = 0.1, the threefold increase in the friction coefficient f causes a significant
reduction of the sections sticking in the crack mouth and has almost no influence on
the same sections at the crack tip. For the friction coefficient f c = 0.3, no phenomena
of this kind are observed: a similar increase in the coefficient of friction between the
contacting bodies almost does not affect the sections of sticking (Fig. 4.11b, d). It is
also worth noting that, in the case of motion of the contact load from the right to the
left, the contact and then the sticking of crack faces in the analyzed cases is always
originated at the mouth for the friction coefficient f = 0.3. For f = 0.1, the crack
closure starts from the tip and the first section of sticking appears in the mouth.

In conclusion, we add that the partial opening of the crack faces leads to an
insignificant shift of the curve FII(λ) to the side of lower values as compared with
the case of full contact (the dashed lines in Fig. 4.11) but only in the case where
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Fig. 4.12 Dependences of
the normalized SIF range
�FII = �KII/(p0

√
πa) on

the angle of crack orientation
β for f = 0.1 and different
relative crack lengths ε =
l0/a: ε = 0.1 (a); ε = 0.3 (b);
ε = 0.5 (c)

the counterbody is located to the right of the crack mouth and does not reach the
locations for which the minimum of the SIF FII is attained. Thus, values of the SIF
range �FII determined as a result of the solution of a simpler problem for the case
of full contact of the crack faces can be used for the investigation of the processes of
contact fatigue fracture.

Special angle [33]. Up to now, a small range of the angles of crack orientation
(β = 140°…170°) was studied in order to establish the angles of orientation of
the edge crack most favorable for its propagation in rolling bodies by the shear
mechanism. In what follows, we present the dependences of the SIF range �K II in
a contact cycle (that controls the process of crack growth in rolling bodies by the
mode II mechanism) on the angle β of orientation of the edge crack with the regard
for the friction coefficient f between the wheel and the rail, the friction coefficient
f c between the crack faces, and the relative crack length ε = l0/a (see Figs. 4.12
and 4.13). The numerical analyses were carried out for the arbitrarily oriented edge
cracks with relative lengths ε = 0.1, 0.3 and 0.5 and the orientation angles β varying
from 5° to 175°. To determine (estimate) the nonnormalized values of the SIFs K I,
K II and K Iθ, we used the following values of the operating parameters of the wheel-
rail systems: the maximum Hertzian pressure p0 = 1100 MPa [93], the length of the
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Fig. 4.13 Dependences of
the normalized SIF range
�FII = �KII/(p0

√
πa) on

the angle β of crack
orientation for different
friction coefficients
f between the wheel and the
rail: f = 0 (a); f = 0.1 (b);
f = 0.3 (c); ε = l0/a = 0.3

contact zone (section) 2a = 14 mm, the coefficients of slipping with friction in the
rolling contact f = 0, 0.1, 0.3 and 0.5, and the friction coefficients between the crack
faces in the rail f c = 0, 0.1, 0.3, 0.5 and 0.7.

The investigation of the SIF range �K II was carried out for the fixed friction
coefficient f = 0.1 between the wheel and the rail, for different relative lengths of the
crack ε = l0/a (Fig. 4.12), for a fixed relative crack length ε = 0.3, and for different
friction coefficients f between the wheel and the rail (Fig. 4.13).

The common feature of the curves presented in Figs. 4.12 and 4.13 is the pres-
ence of two �K II maxima at the angles β = β∗

1 and β = β∗
2 corresponding to the

most favorable orientations for the propagation of shear cracks inclined either in
the direction of the wheel motion (if the angle β = β∗

2 > π/2 is shallow) or in the
direction close to the perpendicular (the angle β = β∗

1 ≤ π/2). As follows from
Fig. 4.12, the values of both maxima of �K II increase with the relative crack length
ε (0 < ε ≤ 0.5) increase. It is clear that, if the ε value increases further, then, start-
ing from a certain time, both |K II| and �K II maxima begin to decrease as the crack
tip moves away from the boundary of the half-plane subjected to the action of the
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Hertzian load. Both maxima of �K II become much higher increase as the friction
coefficient f in the contact zone of rolling bodies increases (Fig. 4.13). Thus, in
particular, for β = β∗

2 and ε = 0.3, the value of �K II(β∗
2) becomes 2.5 and 2.6 times

higher for f c = 0.3 and f c = 0.5, respectively, as the friction coefficient f in the
rolling contact increases from 0.1 to 0.3. This fact is of high importance because it is
known [17] that the friction coefficient f = 0.1 corresponds the friction between the
wheel and the rail under the conditions of wet weather, while f = 0.3 corresponds to
dry weather. Hence, the changes in the weather conditions noticeably affect the SIF
range �K II for the surface cracks in the rails.

The plots of the functions �K II (β, f, f c, ε) in Figs. 4.12 and 4.13 demonstrate that
the friction coefficient f c between the contacting crack faces exerts a strong influence
on�K II: as the friction between the faces increases,�K II noticeably decreases. Thus,
if we compare the maximum values of �K II for the friction coefficients f c = 0.1 and
f c = 0.5 (see Fig. 4.13b; f = 0.1 and ε = 0.3) for both angles β = β∗

1 and β = β∗
2, then

we conclude that the indicated intensification of friction causes a 2.7-fold decrease in
�K II(β∗

1) and a 2.2-fold decrease in�K II(β∗
2). Thus, the prediction of the service life

(durability) of the rail without taking into account the presence of friction between
the crack faces can be erroneous [17].

Finally, we discuss the main problem of evaluation of the angle most favorable
for the propagation of shear surface cracks in the railhead. It is not clear whether
this angle is β = β∗

1 or β = β∗
2. Thus, as friction coefficient f s increases and the

relative crack length ε decreases, the difference between the maxima of �K II(β∗
1)

and �K II(β∗
2) noticeably decreases. It is also worth noting that the angle β∗

2 is more
stable (almost constant) than β∗

1 under variations of the crack length and the friction
coefficient f between the wheel and the rail.

It follows from Figs. 4.12 and 4.13 that the angle β = β∗
1 is more favorable for

the propagation of shear cracks. However, the results of additional investigations of
the quantity max K Iθ (β, ε, p0. f, f c), which controls the process of crack growth
by the normal opening (mode I) mechanism, revealed an important specific feature
(see Table 4.3, ε = 0.5, f = 0.3, and f = 0.5). In this case, the values of max �K II

corresponding to the directions most favorable for crack propagation according to
the mechanism of shear (angles β∗

1 and β∗
2) are compared with the threshold values

of the characteristics cyclic crack growth resistance in transverse shear �K II,th =
13.01 MPa·(m)1/2 [9], while the values of max K Iθ are compared with the tensile
threshold value K I,th = 4.3 MPa·(m)1/2 [94] for rail steels. For the angle β = β∗

1,
the values of max �K II and max K Iθ exceed the corresponding threshold values for
�K II,th and K I,th. For the angle β = β∗

2, this is observed only for max �K II. This
means that the cracks close to vertical (oriented at the angle β = β∗

1) may grow not
only by the mechanism of shear but also by the opening (mode I) mechanism, unlike
the shallow cracks oriented at the angle β = β∗

2 for given values of the parameters
ε, f c, f, and p0. Hence, the cracks oriented at the angle β = β∗

1 may either branch or
deviate from the initial direction β = β∗

1. Thus, the angle β = β∗
2 = 150°…160° is

more favorable for the growth of shear cracks than the angle β = β∗
1.
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Table 4.3 Comparison of
two mechanisms of fracture
for the critical angles
β∗
k (k = 1, 2) of orientation of

the edge crack; ε = 0.5

f c k β∗
k max

�K II

max
K Iθ

β∗
k max

�K II

max
K Iθ

f = 0.3 f = 0.5

0.1 1 68° 55.55 9.22 55° 69.92 24.16

2 152° 39.35 8.91 149° 52.52 19.86

0.3 1 66° 41.87 9.27 52° 59.61 24.35

2 160° 27.05 8.33 158° 42.00 16.99

0.5 1 64° 28.62 9.33 50° 49.98 24.49

2 162° 21.98 8.03 160° 34.76 16.18

Fig. 4.14 Typical contact
fatigue surface defects in the
railhead: pitting [79] (a),
squat (“dark spot”) [79] (b),
checks [76] (c)

Hence, in view of the accumulated numerical data, the angle β = β∗
2 can be

regarded as the characteristic angle, which can be found from the following condi-
tions:

∂

∂β

[
�KII(β, ε, p0, f, fc)

]
β=β∗

k
= 0, k = 1, 2; (4.5)

�KII
(
β∗
2, ε, p0, f, fc

)
> �KII,th,

maxKIθ
(
β∗
2, ε, p0, f, fc

)
< maxKIθ

(
β∗
1, ε, p0, f, fc

)
,

maxKIθ
(
β∗
1, ε, p0, f, fc

)
> �KI,th,

(4.6)

where ε, p0, f, and f c are fixed parameters. The analysis of these contact fatigue
defects, such as pitting (Fig. 4.14a), the left branch of a squat (“dark spot”)
(Fig. 4.14b), and checks (Fig. 4.14c) demonstrates that these defects originate, in
fact, from the edge crack inclined at the characteristic angle.

Note that, in a special case where the friction coefficient in the contact between
the wheel and the rail f = 0, the curve �K II (β) has an additional maximum for
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β = β∗
3 = 15°…20° (Fig. 4.13a). In this case, it is possible to assume that, for the

conditions required for the formation of the right branch of a squat-type (“dark spot”)
damage are created for f = 0 (e.g., if the car wheels move by inertia), (Fig. 4.14b).

Consequences

1. The increase in the friction coefficient f c between the crack faces causes both a
significant decrease in maximum values of the SIFs |FII| and �FII in a contact
cycle and the enlargement of the zones of sticking of the crack faces zones
(Fig. 4.2).

2. The range of the locations of the counterbody characterized by the sticking of
crack faces (in the analyzed cases) enlarges in the case where the horizontal
projection of the crack increases due to the growth of crack length and as the
angle of crack orientation increases (i.e., the complementary angle (β̄ = π − β)
decreases).

3. If the friction coefficients f and f c simultaneously increase within the analyzed
ranges, they compensate the influence of each other both on the SIF range �K II

(Table 4.1) and on the range of locations of the counterbody in which the crack
faces are stuck (Fig. 4.2a, b). At the same time, the simultaneous increase in the
coefficient f c and decrease in the coefficient f cause an significant decrease in
the SIF range �K II.

4. For the analyzed ranges of operating parameters, the relative length ε = ε* of
the shear crack corresponding to the maximum SIF range �FII, as a rule, lies
within the range 2.0…2.6, whereas the angle of shear crack orientation β* =
150°…160°.

5. The increase in the coefficient of sliding friction f between the rolling bodies
causes a significant increase in the SIF |K II| and a decrease in the zone of sticking
between the crack faces, especially if the counterbody is located over the crack
mouth (β = 160°) or has already passed through the mouth (Fig. 4.2b).

6. The contact and subsequent sticking of the crack faces in the analyzed cases (for
small β̄ = π − β and the counterbody moving from the right to the left) always
originates from the crack mouth for the friction coefficient f = 0.3. At the same
time, for f = 0.1, the crack starts to close from the tip, while sticking is first
observed in the mouth.

7. The existence of the characteristic angle β = β* of propagation of edge (surface)
cracks in rail heads is theoretically established and the criteria for its determi-
nation are proposed (Eqs. (4.5) and (4.6)). The values of the angle β* obtained
by using the characteristics of cyclic crack resistance of rail steels under the
conditions of transverse shear are in good agreement with numerous available
engineering data. It can be assumed that this angle is basic for the formation of
typical surface contact fatigue defects, such as pits, checks, squat (“dark spots),”
etc. in rolling bodies.

8. A hypothesis about the mechanism of formation of widespread contact fatigue
defects called squats (“dark spots”) in the rails is proposed.
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4.1.2 Edge Crack Under Normal Opening Conditions. Pitting
Formation

We consider the case of cyclic contact of two bodies (cyclic rolling) realized under
the conditions of boundary lubrication (see the beginning of Chap. 4). Under these
conditions, certain amounts of incompressible liquids (water or lubricants) penetrate
into the crack mouth in the process of rolling and create a pressure between the crack
faces distributed in a certain way. We model the action of this pressure (Fig. 4.15)
by a uniformly distributed normal pressure given by the formula

p1 = r · p0 ·
√
1 − λ2; λ = x0

/
a, (4.7)

or by a pressure varying along the crack faces according to a linear law

p1(t) = r · p0 · (1 − t/ l) ·
√
1 − λ2, 0 ≤ t ≤ l. (4.8)

In these formulas, l is the running crack length and the parameter r varies from 0
up to 1 and determines the level of pressure on the crack faces relative to the pressure
over its mouth. We also assume that the pressure p1(t) acts only in the case where the
contact load covers the crack mouth. In the other cases, we have p1 = 0 and p1(t)= 0.

Influence of pressure acting along the crack faces on the stress intensity
factors. We consider loading schemes depicted in Fig. 4.15a, b. First, we determine
the stress intensity factors at the tip of an initially rectilinear inclined edge crack in
the elastic half-plane. The model contact load (4.1) moves along its boundary. In the
presence of lubricants (lubricating liquids) between the bodies in cyclic contact, the
crack faces suffer the action of a uniformly distributed normal pressure with intensity
p1 (4.7) or a linearly distributed pressure with intensity p1(t) (4.8) in the case where
the load covers the crack mouth. It is assumed that the crack faces are not in contact
due to the presence of lubricants. Thus, the problem of determination of the SIF is
reduced to the solution of the corresponding Eq. (3.155) (with regard for condition
(3.160)) of the first basic problem of the elasticity theory for a half-plane weakened
by an edge crack. The corresponding loading schemes are shown in Fig. 4.15. The

Fig. 4.15 Computational schemes in the following cases: a uniform pressure on the crack faces;
b linearly distributed pressure; B is the direction of movement of the counterbody
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Fig. 4.16 Dependences of the normalized SIF FIθ on the location of a contact load over the mouth
of the edge crack in the cases of pressure uniformly distributed on the crack faces (dashed lines)
and linearly distributed pressure (solid lines)

right-hand sideP(η) of this equation is determined by relation (3.174). The numerical
solution of Eq. (3.155) is found by the method of mechanical quadratures.

We now estimate the influence of the basic operating parameters of rolling couples
(f,β, r and ε) and the type of loading on the crack faces, on the values of the normalized
mixed-mode SIF FI θ = KI θ/

(
p0

√
πa

)
in a contact cycle. These dependences are

presented in Fig. 4.16.
In analyzing the results presented in Fig. 4.16, we can make the following con-

clusions: the values of the SIF FIθ noticeably increase with the intensity of pressure
acting upon the crack faces. Assume that the counterbodymoves from the right to the
left. In this case, the hazardous locations of the counterbody for which maxFIθ(λ) is
attained are realized as soon as this body begins to cover the crackmouth (Fig. 4.16a).
The increase in the friction coefficient f between the contacting bodies almost does
not affect the values of the SIF FIθ and the locations of the counterbody at which its
maximum values are attained (Fig. 4.16b). The increase in the relative crack length
causes a significant growth of the SIF FIθ and, hence, of the maxFIθ and, hence, the
shift of the location of counterbody for which this maximum is attained, toward the
side of the crack tip (Fig. 4.16c). If the slope of an initially rectilinear crack changes,
then we observe a clear trend of decrease in the values of the SIF FIθ as the angle β

decreases. The increase in maxFIθ with the angle β can be explained by the fact that
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Fig. 4.17 Comparison of
the obtained dependences
F(λ) (solid line) with
A. F. Bower’s results [10]
(dashed line)

the crack approaches the boundary of the body (Fig. 4.16d). The transition from the
uniform pressure acting on the crack faces to a pressure distributed according to a
linear law causes a significant decrease in the SIF FIθ in all analyzed cases. However,
all described above are preserved for the linear distribution of loading over the crack
faces.

To substantiate the constructed dependences, we perform the comparative anal-
ysis of our results with the results obtained by Bower [10] for the case of pressure
uniformly distributed over the crack faces (Fig. 4.17). From this figure, we see that
the curves FI(λ) and FII(λ) obtained under the simultaneous action of the con-
tact load and wedging pressure on the crack faces are in good agreement with the
data published by Bower. We observe an insignificant difference within the range
λ = –0.9…−0.7 for FI and λ = –1.0…–0.8 for FII, i.e., for the locations of the
counterbody corresponding to the maxima of the corresponding SIFs.

Paths of propagation of the edge crack under the action ofmoving load on the
boundary of the body and the pressure of lubricant on the crack faces. Assume
that the presence of liquid (water or lubricant) in the contact zone (in the process
of rolling) leads to the wedging of the crack faces. In turn, this implies that crack
propagates according to the mode I mechanism. Hence, the amplitude of mixed-type
SIF �K Iθ = maxK Iθ is a parameter controlling fracture. In order to construct the
trajectories (paths) of development of an edge crack (Fig. 4.15), we use a step-by-
step algorithm similar to the algorithm described in Chap. 2 (see Sect. 2.7). Here, in
addition to the increment of path h, we introduce a step �λ related to the motion of
the counterbody in a contact cycle [14, 88]. In each stage of construction of the path,
the increment of crack path h is measured from the crack tip in the direction specified
by the angle θ = θ** (Fig. 2.21). The auxiliary step�λ is used to seek the extrema of
amplitude of the parameter �K Iθ (maxK Iθ) in a contact cycle . Suppose that, in each
cycle, the crack grows only for the locations of the counterbody (λ = λ * = x∗

0 /a)
guaranteeing the maximum of SIF K Iθ, i.e., that maxK Iθ(λ) = K Iθ(λ*). In each step
of construction of the trajectory (for the corresponding number of contact cycles),
the quantities λ*, θ**, and �K are regarded as constant. The SIFs K I, K II and K Iθ

are determined in each step of construction from the solution of SIE (3.155) of the
problem of elasticity theory for the half-plane weakened by an edge curvilinear crack



www.manaraa.com

164 4 Rolling Contact Fatigue

Fig. 4.18 Paths of a crack propagation depending on its initial length ε = l0/a for different incli-
nation angles β to the boundary (f = 0.1; r = 1.0): a β = 5π/6; b β = 2π/3; c β = π/2

of the corresponding configuration. Every increment of the trajectory is approximated
by a polynomial of the third power (see Sect. 2.7).

We now construct the paths of propagation of an edge initially rectilinear crack
inclined to the boundary of the rolling body under the conditions of boundary lubri-
cation by using the model schemes depicted in Fig. 4.15. In this case, the lubricating
liquid exerts uniform pressure upon the crack faces (relation (4.7)) or creates a lin-
early distributed pressure vanishing at the crack tip (relation (4.8)). In Figs. 4.18, 4.19
and 4.20, we present the trajectories obtained in the case of uniform pressure acting
upon the crack faces, while the case of linear distributed pressure is illustrated in
Fig. 4.21. The paths were constructed as functions of the angle β of inclination of the
crack to the edge of the half-plane, relative initial crack length ε = l0/a, the coefficient
of sliding friction f between the rolling bodies, and the parameter r characterizing the
intensity of pressure exerted by liquid upon the crack faces. In our calculations, we
use the following ranges of the parameters: ε = 0.2…2.0. According to the conditions
of boundary lubrication, f = 0.05…0.15 and the relative pressure of a lubricant r =
0.1…1.0. It is known from the experimental data that, in the case of unidirectional
rolling, the initial macrocracks in a driven body are most often initiated at the angles
β̄ = 180°–β = 15°…45° to its boundary (the direction of motion of the counterbody).
Hence, in our calculations, we prefer the angles β = 8π/9 and β = 5π/6. However,
some other angles were also considered: β = π/6; π/2; 2π/3; and 3π/4.
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Fig. 4.19 Paths of crack propagation as functions of the friction coefficient f between the rolling
bodies

Fig. 4.20 Paths of crack propagation as functions of the intensity r of pressure of the lubricant on
its faces for different initial slopes of the crack to the boundary of the body; f = 0.1; ε = l0/a = 0.2

In Fig. 4.18, we show the paths of an edge crack depending on its initial length
and orientation for a fixed value of the friction coefficient in contact (f = 0.1) and
the same intensity of pressure of the lubricant upon the crack faces (r = 1.0).

The analysis of the paths and numerical data obtained in the course of their con-
struction shows that the slope β of the initial crack to the boundary of the body
strongly affects the shape of the crack path (Fig. 4.18a–c). The more acute the initial
orientation angle (β > π/2), the higher the rate of propagation of the crack to the
boundary (Fig. 4.18a, b). The stress intensity factors along the paths increase, espe-
cially as the crack tip approaches the boundary. The cracks initially oriented at the
angles β ≈ π/2 penetrate deep into the bulk of the material (Fig. 4.18c).
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Fig. 4.21 Paths of the edge
macrocrack propagation by
the mode I mechanism under
the action of a moving
contact load on the boundary
of the half-plane and the
pressure of lubricant on the
crack faces (the dashed
curves—the uniform
distribution of pressure and
the solid curves—the linear
distribution)

The initial crack length weakly affects the shape of its path (Fig. 4.18a, b). At the
same time, its influence on the critical location of the counterbody over the crack
mouth, i.e., on the value of the parameter λ* corresponding to the maximum of K Iθ

in a contact cycle, is noticeable. As the crack length decreases, its critical location
under the counterbody shifts to the edge of the contact load. This means that the
mutual location of rolling bodies in which the crack mouth lies under the center of
the contact load and the contact pressure is maximum (p1(λ) = p0) is not the most
hazardous location.We also add that, in Fig. 4.18, for each value of the relative length
ε, the location of the initial crack is specified according to its value of λ*. It is worth
noting that the values of λ* remain almost constant for the entire period for crack
growth in all analyzed cases.

The paths of an edge crack depicted in Fig. 4.19 show that the decrease in the
contact friction between the rolling bodies somewhat accelerates the process of crack
propagation toward the boundary of the body (the path becomes steeper) but exerts
no essential influence on the shape of the path.

As can be expected, a significant influence on the growth paths of edge cracks
is exerted by the pressure of lubricants in the crack (Fig. 4.20). We now consider
the cracks initially inclined to the edge of the half-plane at acute angles (β = 8π/9,
Fig. 4.20a, and β = π/6, Fig. 4.20d). The increase in the pressure of liquid in the crack
(in the parameter r) strongly promotes a more rapid motion of the crack to the edge
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of the half-plane.1 For the values of the parameter r lower than the indicated values,
the crack does not propagate (K I < 0). This result supports the hypothesis about
the key influence of lubricants on the development of the pitting. However, for the
cracks initially inclined to the edge at large angles (β ≈ π/2), the increase in the level
of pressure in the crack leads to their deepening into the material (Fig. 4.20d). The
transition from one trend to another one can be observed for the paths corresponding
to the angle β = 2π/3, as the parameter r changes from 0.9 to 1.0 (Fig. 4.20b).

The results of the numerical analyses of the crack propagation paths in the case
of linear dist-ributions of the liquid (lubricant) pressure over the crack faces in the
rolling process under the boun-dary lubrication conditions are shown in Fig. 4.21.

The changes in the distribution of pressure of the lubricant on the crack faces
have ambiguous consequences for the development of the crack (Fig. 4.21c). Thus,
for the maximum value of the parameter r (r = 1.0), the transition from the uni-
form distribution to the distribution according to a linear law causes an insignificant
decrease in the path length. For low values of r (r = 0.1), the same transition leads to
its significant elongation. This fact can be explained by a general trend to increase in
the length of the crack growth path observed as the pressure on its faces decreases,
which happens if the uniform distribution is replaced by the linear distribution. In
general, the constructed paths correspond to the stable motion of the crack toward
the edge of the body for both analyzed types of loading [19, 40, 41]. This confirms
the well-known hypothesis by Way [99] about the decisive influence of lubricants
on the formation of pits.

Note that the tenfold increase in the relative length of the initial crack
(ε = 0.1…1.0) weakly affects the shape of the path (Fig. 4.21b). This reveals an
insignificant decrease in its length observed as ε increases and the crack propagates
to the surface of contacting body and forms a pit.

Finally, we note that the numerical solutions of the SIE were obtained by the
method of mechanical quadratures for the order of the systems of the corresponding
complex algebraic equations N = 60. The step of motion of the load was �λ = �

x0/a = 0.1, while the step of increment of the path H = 0.05l0. where l0 is the initial
crack length.

Consequences

1. The values of SIF FIθ strongly increase with the parameter r of the intensity of
pressure on the crack faces. In this case, the most hazardous locations of the
counterbody corresponding to the attainment of maxFIθ are realized as soon the
counterbody begins to cover the crack mouth (Fig. 4.16a) in its motion from
the right to the left.

2. The increase in the coefficient of friction f between the contacting bodies has
almost no influence both on the values of the SIF FIθ and on the locations of

1However, for a given direction ofmotion of the counterbody from the right to the left (Fig. 4.15), the
attainment of high pressures (large r) of the lubricant in cracks inclined at small angles β (β ≈ π/6)
is unlikely.
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the counterbody (the values of λ) at which its maximum values are attained
(Fig. 4.16b).

3. The increase in the relative crack length causes a significant increase in SIF FIθ

and, hence, in maxFIθ. In this case, the location of the counterbody for which
this maximum is realized shifts to the side of the macrocrack tip (Fig. 4.16c).

4. In the case where the slope of an initially rectilinear crack changes, we observe
a clear trend to decrease in the values of the SIF FIθ as the angle β decreases.
The increase in maxFIθ with the angle β can be explained by the approach of
the crack to the boundary of the body (Fig. 4.16d).

5. The transition from the uniform pressure on the crack faces to the pressure
distributed according to a linear law leads to a significant decrease in the SIF
FIθ in all analyzed cases. Moreover, all trends described above are preserved
for this type of loading on the crack faces.

6. Under the simultaneous action of the contact load and wedging of the crack
faces, the SIF FI and FII practically coincide with the results obtained by Bower
[10].

7. The penetration of large amounts of liquid in the crack mouth leads to the
formation of high pressure on the faces (r = 1.0) and causes a decrease in
the path length in the case of replacement of the uniform distribution by a
distribution according to a linear law. In the presence of insignificant amounts
of liquid in the crack mouth (r = 0.1), we observe the opposite picture.

8. A decrease in the angle of crack orientation β causes a significant increase in
the lengths of crack paths.

9. The changes in the relative length of the initial crack (ε = 0.1…1.0) weakly
affect the shape of the path.

10. The constructed paths reveal the stable appearance of the crack on the edge of
the body for both analyzed types of loading, which theoretically confirms the
well-known hypothesis by Way [99] about the decisive influence of lubricants
on the formation of pitting.

4.1.3 Residual Contact Lifetime of Rolling Pair Elements
by Criterion of Pitting Formation with Consider
the Cyclic Crack Growth Resistance Characteristics
of Materials

The residual lifetime is evaluated according to the criterion of formation of pitting,
i.e., according to the number of rolling cycles prior to its formation by using the
procedure described in Chap. 2 (Sect. 2.3). It is assumed that if the sites of pitting
appear on the surfaces of the rolling bodies, then the bodies lose theirs operating
characteristics and require either replacement or repair.
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To compute the lifetime according to the known solutions of the Hertz problem
[62], we establish the maximum levels of contact pressure p0 and the length of the
contact zone 2a for the given rolling couple as follows:

p0 =
√

P

πηb
· R1 + R2

R1R2
; 2a = 4√

π

√

η
P

b
· R1R2

R1 + R2
; η = 1 − ν2

1

E1
+ 1 − ν2

2

E2
,

(4.9)

where ν1 and ν2 are Poisson’s ratios, E1 and E2 are Young’s moduli, R1 and R2 are
the radii of the rolling bodies, b is the width of rolling bodies, and P is the total
normal load acting upon the rolling couple.

The values of p0 and 2a obtained in this way are introduced in the computational
scheme as operating parameters. The application of these parameters in the evaluation
of the residual lifetime of elements of a specific rolling couple allows us to consider
not only the characteristics of cyclic crack growth resistance of materials of the
elements but also their physical sizes and the level of applied loading in the course
of operation.

Since our calculations are performed within the framework of linear fracture
mechanics, we start to measure the residual lifetime from the time when the crack
reaches the macrolevel and begins to propagate by the shear mechanism. (Thus, the
period of macrocrack initiation is not considered in this case.) This approach has
a reasonable substantiation, namely, the experimental data on the contact fatigue
of cyclically contacting bodies demonstrate [50] that the number of rolling cycles
required for a crack to pass from the germinal state to the level of macrocrack is
much smaller (by orders of magnitude) than the number of cycles leading to the
appearance of a surface defect (pit).

The residual lifetime is first calculated for the shear stage of crack propagation
of when it develops rectilinearly by elongating with the help of the values of the SIF
range K II in each step of calculations. These steps do not change for the entire period
of realization of the numerical algorithm. However, if the crack starts to propagate by
the mode I mechanism, then its lifetime is determined along the curvilinear sections
of the path with variable increments by using maximum values of the mixed-type
SIF K Iθ.

In Table 4.4, we present the characteristics of cyclic crack growth resistance of
steels for the elements of wheel-rail systems and backup rolls of the rolling mills
whose lifetimes are investigated in this section.

Lifetime of the backup rolls of rolling mills estimated by the formation of
pitting. The rolls of rollingmills are high-cost elements of the rolling installation due
to their unhandiness and complexity of their production. Therefore, the determination
of the causes of decrease in the lifetime of rolls and conditions under which the
lifetime may increase is an important scientific and engineering problem.

It is known that the main causes of the loss of serviceability by the surfaces of
the rolls are the appearance of spalling and pitting. These defects are removed by
using the technology of regrinding, which enables us to get pure surfaces of the
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Table 4.4 Characteristics of cyclic crack growth resistance of some steels

Steel �Kth �K1–2 �K2–3 �Kfc �K* n v0 q

MPa·(m)1/2 m/cycles

Roll steel

SKH (shear)
[79]

18.0 20.4 40.0 47.8 − − 2.56 × 10−10 0.99

9KhF (9XF)
(opening) [2]

10.9 14.1 35.9 53.0 − − 6.5 × 10−8 1.06

Rail steel

RSB12 (shear)
[9]

13.01 16.5 73.5 92.4 − − 3.84 × 10−7 1.41

75KhGST
(75XGCT)
(opening) [94]

4.3 5.2 29.1 37.0 19.7 3.48 1.06 × 10−7 1.26

Wheel medium-strength steel

65G (65G)
(shear) [70]

− 17.0 50.0 − 33.4 1.15 − −

65G (65G)
(opening) [82]

− 11.7 34.5 − 29.8 3.20 − −

rolls by removing the defective layer. However, on the other hand, this decreases
the diameter of the rolls. A single operation of regrinding removes a layer with a
thickness of 3…10 mm from the surface [77]. As a rule, after 5…15 regrindings,
the rolls are finally removed from the rolling mill. From the viewpoint of fracture
mechanics, it is necessary to study how the main operation factors (environment and
load) affect the crack propagation and the appearance of pits or spalls in the surface
layer of the roll, thus decreasing its contact lifetime.

The contact lifetime estimated by the development of pitting was determined for a
backup roll of the rolling mill under the conditions of boundary lubrication in contact
between the backup and working rolls (this lubrication is determined by the technical
process of rolling). Note that the characteristics of cyclic crack resistance of SKH
and 9KhF roll steels are available in the literature only for one of the mechanisms of
crack propagation. Therefore, in view of the closeness of the chemical compositions
of roll steels (Table 4.4), we assume that the behavior of roll steels is similar to the
behavior of SKH steel in the shear stage and to the behavior of 9KhF steel in the
stage of opening displacement [23, 46, 54].

For both stages of crack propagation, we computed the lifetime for various values
of the friction coefficients f c between the crack faces and the initial angles β of
inclination of the crack to the edge of the body (Table 4.5). The lower block of data
in Table 4.5 characterizes the dependence of lifetime on the condition of transition
from the shear mechanism to the opening mechanism chosen in our calculations
(see relation (2.29)). In this relation, the parameters of pressure on the crack faces
r1, r2 and r3 correspond to the conditions K Iθ(r) ≥ K I,1–2, K Iθ(r) ≥ 3/2·K I,1–2, and
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Table 4.5 Residual contact durability of the backup roll evaluated according to the development
of pitting in SKH and 9KhF (9XF) steels with regard for the stages of shear or normal opening in
the propagation of the edge crack, respectively (a = 6 mm, f = 0.1)

r l0τ,
mm

l0σ,
mm

Ngτ · 10−6,
cycles

Ngσ · 10−6,
cycles

Ng · 10−6,
cycles

f c β = 160°, r = r3, p0 = 1500 MPa

0.0 0.1350 1.15 3.21 5.87 0.05 5.93

0.1 0.1035 1.66 4.72 8.77 0.08 8.85

β f c = 0.1, r = r3, p0 = 1500 MPa

150° 0.1370 1.43 4.69 9.35 0.13 9.48

160° 0.1035 1.66 4.72 8.77 0.08 8.84

r f c = 0.1, β = 160°, p0 = 1500 MPa

r1 0.1035 1.66 4.72 8.77 0.08 8.85

r2 0.1365 1.66 4.72 8.77 0.02 8.79

r3 0.1660 1.66 4.72 8.77 0.01 8.78

K Iθ(r) ≥ 2·K I,1–2, respectively. Note that the choice of the condition of start of the
opening displacement of a crack branch (transition to themode Imechanism) strongly
affects the lifetime Ngσ in the stage of crack propagation by the mode I mechanism.
Thus, the transition from the condition r1 to the condition r3 causes a decrease in Ngσ

by about an order of magnitude. Note that, in our calculations, the crack faces suffer
the action of a uniformly distributed pressure of lubricant in the stage of opening
displacement.

The analysis of the numerical results presented in Table 4.5 indicate that the
lifetime Ngτ determined in the stage of shear exceeds the lifetime Ngσ in the stage of
opening displacements by two orders of magnitude and is determining. As compared
with the case of smooth contact (f c = 0), the presence of friction between the crack
faces with a coefficient f c = 0.1 increases the residual lifetime Ng by 50%. The
decrease in the slope of the initial macrocrack causes a significant increase in the
residual lifetime both for the stage of shear and for the stage of normal opening
displacement (mechanism).

Lifetime of elements of the wheel-rail couple computed with regard for the
formation of pitting in RSB12 and 75KhGST (75XGCT) rail steels and in 65G
(65G) medium-strength wheel steel. It is known that the railway transport is very
important for the national economy. The problem of guaranteeing of the regularity
of railway transportations is a strategic task for our country. The solution of this
problem requires the creation of the criteria of evaluation of the serviceability and
lifetime of the critical objects of the railway transport. The wheel-rail systems are
regarded as an important class of objects of this kind (Fig. 4.22).

We compute the lifetimes of these objects in the cases of shear and opening mech-
anisms of propagation of edge macrocracks in elements of the wheel-rail systems
[18, 35, 52, 85] for various characteristics of cyclic crack growth resistance of steels,
different conditions of transition between the indicatedmechanisms [85], and various
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Fig. 4.22 Scheme of contact
interaction in the wheel-rail
system

distributions and levels of pressure of the lubricant on the crack faces. By using the
obtained results, in view of the above-mentioned and other factors, we can optimize
the choice of materials and operating parameters for the wheel-rail systems.

Note that the diagrams of fatigue fracture of materials according to the mode II
mechanism, including the case of rail steels, are practically absent in the available
literature. Hence, in our calculations, we use the fatigue fracture diagrams (FFD) and
the characteristics of cyclic crack growth resistance in normal opening (Table 4.3)
for 75KhGST rail steel with the structure of lamellar pearlite. In the case of shear,
we use the FFD plotted for RSB12 steel whose chemical composition and structure
are similar to the chemical composition and structure 75KhGST steel.

Prior to the analysis of the numerical results, we present some experimental and
in-service data on the contact lifetime of rail steels. On the basis of the engineer-
ing data presented in [102], it was indicated that the total lifetime of the wheel-
rail system in rolling constitutes N = 106…107 cycles. In [47], it was experimen-
tally established that N = 1.5×106 (900A steel for p0 = 1100 MPa). In [12], for
rail pearlitic steels (STD, HH, HH-1, BS11.0 and CrMo), it was demonstrated that
N ≈ (1…2)×106 cycles if the maximum level of contact pressure varies within the
range p0 = 1000…1300 MPa. It was also assumed [9, 10, 79] that the shear stage is
longer than the normal opening stage.

In Table 4.6, we present the numerical data for three types of conditions for the
transitions from the stage of initiation to the stage of shear and from the stage of
shear to stage of normal opening displacement (see relations (2.23), (2.26), (2.28),
and (2.29)): For the first type of conditions, the characteristics K II,1–2 and K I,1–2,
respectively, are the key parameters in the first and second transitions; for the second
type, (marked by *), the key characteristics are K II(vth) and K I,1–2 in the first and
second transitions, respectively, and for the third type (marked by **), the role of
these parameters is played by K II(vth) and K I(vth) for the first and second transitions,
respectively. The analysis of the numerical results obtained for the indicated types of
conditions enables us to determine the conditions describing the process of pitting
formation most accurately. The data presented in Table 4.6 were obtained for the
uniform distribution of pressure on the crack faces.

The analysis of the numerical data yields the following conclusions: for the first
type, we get somewhat underestimated values of the lifetimeNg, for the second type,
these values are higher, and for the third type, we get the highest values closest to
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Table 4.6 Residual lifetime of RSB12 and 75KhGST (75XGCT) rail steels (a = 7 mm)

l0τ, mm l0σ, mm Ngτ · 10−6, cycles Ngσ · 10−6, cycles Ng · 10−6, cycles

f c β = 150°; r = 0.1; f = 0.1; p0 = 1100 MPa

0.05 1.01 5.04 0.11 3.04 3.15

0.05* 0.76 5.04 0.39 3.04 3.44

0.05** 0.76 4.01 0.39 6,59 6,98

0.10 1.01 2.71 0.09 0.43 0.51

0.10* 0.76 2.71 0.38 0.43 0.80

0.10** 0.76 2.21 0.37 1.95 2.32

0.15 1.01 1.70 0.06 0.22 0.28

0.15* 0.76 1.70 0.35 0.22 0.57

0.15** 0.76 1.38 0.33 0.89 1.22

0.20 1.01 1.16 0.02 0.15 0.17

0.20* 0.76 1.16 0.31 0.15 0.46

0.20** 0.76 0.93 0.27 0.64 0.91

β° r = 0.1; f = 0.1; f c = 0; p0 = 1100 MPa

145° 1.02 2.46 0.08 0.67 0.75

145°* 0.72 2.46 0.39 0.67 1.06

145°** 0.72 2.00 0.38 4.66 5.05

150° 1.01 2.71 0.09 0.43 0.52

150°* 0.76 2.71 0.38 0.43 0.80

150°** 0.76 2.21 0.37 1.95 2.32

155° 1.07 3.74 0.10 0.53 0.63

155°* 0.82 3.74 0.39 0.53 0.92

155°** 0.82 3.10 0.38 2.44 2.82

160° 1.20 2.13 0.08 0.16 0.24

160°* 0.93 2.13 0.40 0.16 0.56

160°** 0.93 1.77 0.38 0.82 1.20

f c β = 150°; r = 0.1; f = 0.1; p0 = 1100 MPa

0.00 1.01 2.71 0.09 0.43 0.52

0.00* 0.76 2.71 0.38 0.43 0.80

0.00** 0.76 2.21 0.37 1.95 2.32

0.05 1.33 2.71 0.08 0.43 0.51

0.05* 0.83 2.71 0.51 0.43 0.94

0.05** 0.83 2.21 0.50 1.95 2.45

0.10 1.55 2.71 0.10 0.43 0.53

0.10* 0.97 2.71 0.82 0.43 1.25

0.10** 0.97 2.21 0.79 1.95 2.74

0.15 2.08 2.71 0.09 0.43 0.51

0.15* 1.28 2.71 0.90 0.43 1.33

(continued)
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Table 4.6 (continued)

l0τ, mm l0σ, mm Ngτ · 10−6, cycles Ngσ · 10−6, cycles Ng · 10−6, cycles

f c β = 150°; r = 0.1; f = 0.1; p0 = 1100 MPa

0.15** 1.28 2.21 0.84 1.95 2.80

0.20 2.59 2.71 0.03 0.43 0.46

0.20* 1.79 2.71 0.83 0.43 1.26

0.20** 1.79 2.21 0.72 1.95 2.67

the experimental data. However, in the third case, the lifetime in shear Ngτ is much
lower than the lifetime in normal opening Ngσ, which contradicts the experimental
data [3]. Hence, the data on Ngτ, Ngσ, and Ng obtained in the second case prove
to be most suitable. The reasoning presented above implies that the second type of
conditions is optimal for the numerical analysis. The conclusions formulated in what
follows, in the first turn, are mainly base on the corresponding results (marked by *

in Table 4.6).
The data presented in Table 4.6 also implies that the decrease in the angle β by

only 15° promotes a more than twofold increase in the total lifetime Ng. In this case,
the variations of lifetime in the stage of opening displacement is more pronounced,
which is explained by the elongation of the path observed as the angle β decreases
(Fig. 4.18). The pressure of lubricants also strongly affects the lifetime of rails. The
elevation of pressure on the crack faces decreases the residual lifetime, accelerates
the transition to the stage of opening displacement (shortening the length of the
shear crack), and accelerates the process of crack growth in the stage of opening
displacement. The increase in friction between the crack faces causes a significant
increase in the lifetime in the stage of shear, which leads, in turn, to a considerable
increase in the residual lifetime.

In general, the results of numerical calculations presented in Table 4.6 confirm a
natural hypothesis that the increase in friction between the faces of the edge crack
strongly inhibits its growth and leads to an increase in the lifetime of rails (in the
shear stage of crack growth). At the same time, the elevation of pressure of liquid
upon the crack faces accelerates its growth and decreases lifetime (in the opening
stage). The angle of initial orientation of the crack also strongly affects the residual
lifetime. Thus, the lifetime significantly increases as the indicated angle decreases
both in the stages of shear and normal opening displacement.

Theoretical curves of contact fatigue for rail and wheel steels. Sizes of crum-
bling (pitting) particles. In practice, there are numerous attempts to construct the
dependences of durability (lifetime) of the elements of rolling couples on the contact
load, i.e., the so-called contact fatigue curves. It is clear that the presence of these
dependences in the engineering calculations would be helpful to give adequate pre-
dictions the service life of designed elements of a couple according to the a priori
known conditions of operation of these elements. However, due to the complexity of
realization of these experiments and their high cost, the researchers mostly restrict
themselves to several points on the coordinate system p0–Ng. The required curves
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Table 4.7 Residual lifetimes of RSB12 and 75KhGST (75XGCT) rail steels as functions of the
contact load and the distribution of pressure of the lubricant over the crack faces

p0, MPa l0τ, mm l0σ, mm lcσ, mm Ngτ · 10−6,
cycles

Ngσ · 10−6,
cycles

Ng · 10−6,
cycles

f = 0.1, f c = 0.1, r = 0.1, β = 150°, a = 7 mm

Linear distribution

600 3.038 11.07 16.84 2.3913 1.6265 4.0178

800 1.831 7.07 11.11 1.6161 1.4780 3.0942

1000 1.279 5.20 8.17 0.8098 1.4103 2.2201

1200 0.824 3.98 6.69 0.6250 1.1963 1.8212

1400 0.627 3.27 5.39 0.4485 1.0403 1.4888

1600 0.522 2.80 4.80 0.3003 0.9290 1.2293

1800 0.441 2.47 4.38 0.2894 0.8292 1.1186

Uniform distribution

600 3.038 5.629 9.18 1.7282 0.7583 2.4865

800 1.831 3.931 6.33 1.4772 0.5771 2.0542

1000 1.279 3.092 5.14 0.7536 0.4837 1.2373

1200 0.824 2.424 4.18 0.5881 0.3897 0.9778

1400 0.627 2.002 3.51 0.3802 0.3381 0.7183

1600 0.522 1.709 3.14 0.3065 0.3048 0.6113

1800 0.441 1.489 2.93 0.2742 0.2832 0.5575

are obtained on the basis of these data by means of interpolation (and sometimes of
extrapolation). The drawbacks of this method are obvious.

In this chapter, on the basis of the dependences of the residual lifetime of rail and
wheel steels [31, 40, 42, 85, 89, 90] on the maximum contact pressure p0 obtained
by using numerical methods, we make an attempt to construct the theoretical contact
fatigue curves for elements of the wheel-rail system. In order to substantiate the
obtained results, the theoretical dependences were supplemented with the available
experimental data.

The investigated model studies two types of distributions of pressure of the lubri-
cants on the crack faces. Therefore, in constructing contact fatigue curves, it is
important to determine how the variations of these distributions affect the shape and
mutual arrangement of the obtained curves. For this purpose, in Tables 4.7 and 4.8,
we present the dependences of the residual lifetime on themaximum contact pressure
p0 for both types of action of the lubricant upon the crack faces in the opening stage
of crack propagation.

The results of calculations presented in Tables 4.7 and 4.8 imply that the variations
of the maximum level of contact pressure in the wheel-rail system strongly affects
the residual lifetime in both stages of propagation of edge cracks. This influence is
especially pronounced in the stage of crack growth by the shear mechanism in which
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Table 4.8 Residual lifetime of 65G (65G) wheel steel as a function of the contact load and the
distribution of pressure of the lubricant over the crack faces

p0. MPa l0τ, mm l0σ, mm lcσ, mm Ngτ · 10−6,
cycles

Ngσ · 10−6,
cycles

Ng · 10−6,
cycles

f = 0.1, f c = 0.1, r = 0.1, β = 150°, a = 7 mm

Uniform distribution

600 4.44 15.37 21.94 0.1749 0.4837 0.6586

800 2.79 10.75 15.32 0.1050 0.3638 0.4689

1000 1.95 8.12 11.90 0.0755 0.2976 0.3731

1200 1.44 6.44 9.46 0.0593 0.2481 0.3074

1400 1.12 5.36 8.05 0.0487 0.2178 0.2666

1600 0.86 4.51 6.59 0.0414 0.1879 0.2293

1800 0.73 3.91 5.81 0.0350 0.1713 0.2063

Linear distribution

600 4.44 36.44 49.06 0.4290 0.9018 1.3308

800 2.79 24.57 34.46 0.2193 0.6980 0.9173

1000 1.95 17.64 24.52 0.1190 0.5781 0.6971

1200 1.44 13.31 19.29 0.0741 0.5038 0.5779

1400 1.12 10.37 12.75 0.0563 0.4313 0.4877

1600 0.86 8.41 10.12 0.0460 0.1526 0.1986

1800 0.73 7.01 8.41 0.0374 0.0954 0.1329

the lifetime varies almost by an order of magnitude within the accepted range of
values of p0. It is also worth noting that, as the load increases, the lifetime in the
stage of normal opening approaches the lifetime observed in the shear stage. In this
case, for the linear distribution of pressure on the crack faces, the stage of opening
displacement becomes longer than the shear stage even for p0 = 1000 MPa. This
effect is explained by the decrease in the initial values of l0σ. Note that, within the
framework of the formulated model, these values also determine the final length of
the shear crack.

Note that the transition from the uniform distribution of pressure on the crack
faces to the linear distribution causes a noticeable increase in the lifetime for both
stages of crack propagation and an increase in initial crack lengths (l0σ). The last
observation implies that, for the linear distribution, the rectilinear section of the path
is longer and the pit is deeper than for the uniform distribution.

By using the values of the residual lifetime for rail and wheel steels given in
Tables 4.7 and 4.8, we can plot the theoretical contact fatigue curves (Fig. 4.23).

To complete the obtained picture, we use the initial and final values of crack length
in the stage of opening displacement to construct the table of characteristic sizes of
pitting (Table 4.9) formed for different values of the contact pressure for both types
of distributions of pressure of the lubricant over the crack faces.
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Fig. 4.23 Theoretical
contact fatigue curves
for: a RSB12 and
75KhGST (75XGCT) rail
steels; b 65G (65G)
medium-strength
wheel steel;
f = 0.1;
f c = 0.1; r = 0.1; β = 150°;
a = 7 mm

Table 4.9 Sizes of defects and the number of rolling cycles required for their initiation in RSB12
and 75KhGST (75XGCT) rail steels

p0, MPa Pit depth,
mm

Pit length,
mm

Ng · 10−6,
cycles

Pit depth,
mm

Pit length,
mm

Ng · 10−6,
cycles

Uniform distribution Linear distribution

600 2.81 7,57 2.4865 5.53 13.57 4.0178

800 1.96 5.29 2.0542 3.53 8.88 3.0942

1000 1.54 4.34 1.2373 2.60 6.53 2.2201

1200 1.21 3.40 0.9778 1.99 5.23 1.8212

1400 1.00 2.93 0.7183 1.63 4.40 1.4888

1600 0.85 2.65 0.6113 1.40 3.93 1.2293

1800 0.74 2.49 0.5575 1.23 3.62 1.1186
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The analysis of the dependences computed for the corresponding loads p0 and
presented in Fig. 4.23 and Table 4.9 enables us to conclude that the sizes of defects
and the residual lifetime decrease according to a logarithmic law as the external load
increases. In particular, in the case of uniform distribution of the pressure of lubricant
over the crack faces in rail steels (Fig. 4.23a),we get Ng = ln

[
(p0 − 500)

/
2500

]−3/4

cycles. In this case, the rate of changes in the lifetime and its value are always higher
for the linearly distributed pressure than for the uniform distribution.

Consequences

1. The lifetime of the nearsurface layer of a backup roll computed in the shear
stage exceeds the lifetime in the normal opening stage by about two orders of
magnitude and is determining.

2. The elevation of friction between the faces of an edge crack noticeably decelerates
its growth and increases the lifetime of the wheel-rail system in the shear stage
of crack propagation.

3. The increase in the pressure of lubricant on the crack faces accelerates the process
of crack growth and decreases the lifetime of thewheel-rail system in the opening
stage of crack propagation.

4. As the angle of initial orientation of the crack decreases, the lifetime of thewheel-
rail system increases both in the shear and opening stages of crack propagation.

5. The increase in the external load causes a significant decrease in the sizes of pits
and in the residual lifetime.

4.1.4 Conclusions

• The increase in the friction coefficient f c between the crack faces causes an notice-
able decrease in the extreme values of the SIF K II and an increase in the zones of
sticking of the crack faces in a rolling cycle (Fig. 4.2a).

• In the analyzed cases, the interval of locations of the counterbody for which the
crack faces are stuck increases with the horizontal projection the crack due to
the increase in its length and in the angle of orientation of the crack (i.e., as the
supplementary angle decreases).

• For the considered ranges of operating parameters, the relative length (ε = l0/a) of
the shear crack, corresponding to the maximum SIF range K II is, as a rule, within
the limits 2.0…2.6 and the angle of orientation of the shear crack belongs to the
interval β* = 150°…160°.

• The friction coefficient f between the rolling bodies strongly affects the SIF K II

and �K II, and the formation of sticking of the faces of a gently sloping (β ≈ β*)
crack only if the counterbody is located over the crack. However, this influence is
very weak prior to the indicated time (Fig. 4.2b) in the case where the counterbody
moves from the right to the left.

• The values of themixed-type SIFK Iθ significantly increase with the parameter r of
intensity of pressure on the crack faces. In this case, the hazardous locations of the
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counterbody for which maxFIθ is attained are realized as soon as the counterbody
begins to cover the crack mouth (Fig. 4.16a).

• The increase in the relative crack length leads to a significant growth of the SIF
K Iθ and, hence, of maxK Iθ; moreover, the location of the counterbody for which
this maximum is realized shifts to the side of the crack tip (Fig. 4.16c).

• The transition from the uniform pressure on the crack faces to the pressure dis-
tributed according to the linear law causes a significant decrease in the SIF K Iθ

in all analyzed cases. Moreover, all trends discussed above are preserved for the
indicated type of loading of the crack faces.

• The constructed trajectories of propagation of edge cracks reveal the stable appear-
ance of the cracks on the edge of the body for both considered types of distributions
of pressure over the crack faces, which confirms the well-known hypothesis by
Way [99] concerning the decisive influence of lubricants on the formation of pits.

• The lifetime of the nearsurface layer of a backup roll determined for the shear
stage is determining and exceeds the lifetime obtained for the opening stage by
about two orders of magnitude.

• The elevation of friction between the faces of edge cracks strongly decelerate the
process of crack growth and causes an increase in the lifetime of the wheel-rail
system in the shear stage of crack propagation.

• The increase in the external load (in the maximum levels of contact pressure p0)
causes a significant decrease in the sizes of pits and in the residual lifetime.

4.2 Spalling

The phenomenon of spalling (see Figs. 4.24 and 4.25) of a part of the contact surfaces
of cyclically contacting solid bodies is a typical contact fatigue defect for a number
of tribojoints (bearings, wheel-rail systems, cylinders of rolling mills, etc.). It is clear
that the appearance of these defects in elements of rolling couples negatively affects
their serviceability and lifetime. Therefore, the lifetime of these tribojoints (rolling
couples) can be also estimated by the criterion of spalling formation.

Fig. 4.24 Spalling in
bearing steel under contact
fatigue test [83]



www.manaraa.com

180 4 Rolling Contact Fatigue

Fig. 4.25 Spalling from the
rail surface

Fig. 4.26 Computational
schemes of the problem
a shear stage; b opening
stage; B is the direction of
motion of the counterbody

In view of the above reasoning, we now consider the kinetics of crack propagation
under the contact surface of one body in a couple within the framework of the
formulated model. Assume that a microcrack appears in the bulk of the material and
is located under the contact surface at a depth d = δa (δ is the relative depth of
location of the crack). In the process of cyclic loading of the body, this microcrack
is transformed into a macrocrack, which first grows rectilinearly under the action of
shear stresses and then begins to propagate curvilinearly by the mode I mechanism
(Fig. 4.26).

In the contact zone, under the action of a contact load moving along the boundary
of the half-plane, the faces of internal crack are either open, or slide with friction, or
are stuck (Fig. 4.26a). However, in order to simplify the problem, we assume that, in
the shear stage, the faces of macrocrack are in contact along the entire length under
the conditions of sliding with friction. If the crack begins to develop curvilinearly by
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the mode I mechanism, then we assume that the crack faces are not in contact (open)
along the entire crack length (Fig. 4.26b). In finding the trajectories of propagation
of the subsurface crack, we trace its growth from both tips in the shear and opening
stages.

Note that the direction of tangential forces in the wheel-rail system is chosen
depending on the type of railway wheels. Thus, the direction of action of the friction
forces from the (driven) wheels of cars onto the surface of the rail coincides with the
direction of motion of the car. For the locomotive (driving) wheels, the friction forces
act in the opposite direction if the train moves in the traction mode. If we consider
the action of friction forces on the surface of a railway wheel, then these directions
are diametrically opposite. Thus, the directions of motion of the counterbody (B) and
the tangential forces fp(x) in Fig. 4.26 correspond to the action of car wheels on the
rail or the action of the rail on a locomotive in the course of motions of the train in
the traction mode.

4.2.1 Subsurface Crack in Contact Zone Under Transverse
Shear Conditions

The stage of transverse shear for a subsurface macrocrack has a significant difference
from the shear stage for the edge macrocrack due to its development at a certain
distance from the contact surface. The indicated difference is reduced, in the first
turn, to a significant duration of the crack propagation explained by possible large
distances from the edge of the half-plane, where the acting stresses are much lower
than in the surface layer. This effect becomes stronger for the horizontal subsurface
cracks because both crack tips may develop for infinitely long time without attaining
the values of �K IIfc critical for shear or the values of K Ith, which enable us to pass
to the mode I mechanism of crack propagation. The presented reasoning implies
that the lifetime computed in this stage by the criterion of spalling formation can
be sometimes much larger than the lifetime obtained for edge cracks. Moreover, the
contact durability of the elements of tribojoints is found just in the shear stage of
propagation of subsurface macrocracks.

Influence of the operating parameters of rolling couple on the stress intensity
factorsKII at the tips of subsurface crack in a single contact cycle. We now estab-
lish (within the framework of the accepted computational model) the dependences
of the normalized SIF FII = KII

/(
p0

√
πa

)
on the location of the counterbody on

the edge of the half-plane containing a horizontal subsurface crack for various values
of the friction coefficient f c between the faces. These dependences demonstrate, to
the full extent, the dynamics of changes in the stress-strain state at the crack tips in
a single contact cycle (Fig. 4.27).

The analysis of the plots indicates that if the contact load moves from the right to
the left, then we have minF−

II = −0.095 and maxF−
II = 0.232 for f c = 0 at the left

crack tip and minF−
II = −0.072 and maxF−

II = 0.151 for f c = 0.4. Thus, the increase
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Fig. 4.27 Dependences of
the normalized SIFs at
(a) the right (F+

II ) and
(b) left (F−

II ) tips of a
horizontal crack on the
location of the counterbody
for various values of the
friction coefficient f c
between the crack faces

in the friction coefficient causes a decrease in the minimum and maximum absolute
values of the SIF by 25%, and 35%, respectively. Similarly, for the right tip, we get
minF+

II = −0.099 and maxF+
II = 0.234 for f c = 0 and minF+

II = −0.072, maxF+
II =

0.155 for f c = 0.4. Hence, as f c increases at the right tip, the minimum andmaximum
absolute values of the SIF decrease by 27% and 34%, respectively. For the gradual
increase in the friction coefficient f c by 0.1, we conclude that it leads to a decrease
in min

∣∣F−
II

∣∣ and maxF−
II by 6.8% and 10.2%, respectively, on the average, whereas

min
∣∣F+

II

∣∣ and maxF+
II decrease, on the average, by 7.6% and 9.8%.

Hence, for a horizontal subsurface macrocrack, the changes in the friction coef-
ficient between the faces affect (almost identically and significantly) the maximum
and minimum normalized SIF FII both at the right and left crack tips. In the case of
motion of the counterbody from the right to the left, the times when the maxima of
FII are attained at the left and right tips are different. Indeed, the SIF first attains its
maximum value at the right crack tip for λ = –0.8…–0.5 and then at the left tip for
λ = –1.6…–1.1.

Consider the case of a subsurface shear macrocrack inclined at an angle α = 45°
to the horizontal (Fig. 4.28). The main distinction from the case of horizontal crack
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Fig. 4.28 Dependences of
the normalized SIFs (a) F−

II
and (b) F+

II in the inclined
subsurface macrocrack on
the location of the
counterbody for different
values of the friction
coefficient f c between the
crack faces

is that the maximum and minimum absolute values of the SIF FII at the right tip
are higher than the corresponding values at the left tip. This is explained, first of
all, by the difference between the distances from these tips to the contact surface.
Moreover, if we pass from a horizontal crack to an inclined crack, then we observe
a deceleration of growth of the maximum values of the SIF FII and a more intense
increase in the minimum absolute values of the SIF FII as the friction coefficient f c
decreases. For the inclined crack, the SIF K II attains the extrema at both tips when
the load moves over the crack center. For the horizontal crack, this happens when
the load has already passed the crack (Figs. 4.27 and 4.28). In general, the trend to
decrease in the SIF range �FII remains invariable as f c increases, as in the case of
a horizontal crack.

It follows from Fig. 4.28 that, for the crack inclined at the angle α = 45°, we get
minF−

II = −0.213 and maxF−
II = 0.084 for f c = 0 at the left tip and, in addition,

minF−
II = −0.126 and maxF−

II = 0.066 for f c = 0.4. Thus, the increase in the fric-
tion coefficient f c causes a decrease in the minimum and maximum absolute values
of the SIF FII by 41% and 22%, respectively. Similarly at the right tip, we find
minF+

II = −0.183 and maxF+
II = 0.117 for f c = 0 and minF+

II = −0.093 and
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Fig. 4.29 Dependence of
the normalized SIF �FII
range at the right and left tips
of a subsurface macrocrack
on the angle α of its
orientation

maxF+
II = 0.091 for f c = 0.4. Thus, as f c increases at the right tip, the minimum

and maximum absolute values decrease by 49% and 22%, respectively. For the grad-
ual increase in the friction coefficient f c by 0.1, the numerical results indicate that
min

∣∣F−
II

∣∣ and maxF−
II decrease, on the average, by 12.3% and 6.1%, respectively,

whereas min
∣∣F+

II

∣∣ and maxF+
II decrease, on the average, by 15.5% and 6.1%.

Hence, at the right crack tip, the SIF FII changes faster than at the left tip (solely
due to the minimum values). This can be explained by the closeness of this tip to the
boundary of the half-plane.

In subsequent studies, for the adequate evaluation of the residual lifetime, we use
the notion of driving crack tip, i.e., the tip at which the values of max SIF |K II| and
�K II are higher in a contact cycle.

Determination of the hazardous orientation of the subsurface crack. By using
the established dependences FII(λ) for the right and left crack tips and assuming that
the value of the SIF range�FII at the driving crack tip is responsible for the fracture,
we plot the function �FII(α) at the right and left tips of the subsurface crack. Then
we determine the angle of orientation α guaranteeing the attainment of max �FII(α),
i.e., the angle guaranteeing the validity of the necessary condition of extremum:

∂
[
�FII(α)

]

∂α

∣∣∣∣∣
α=α∗

= 0. (4.10)

In Fig. 4.29, we present the plots of the dependence of �FII on the inclination
angle of the subsurface macrocrack. Note that, as a result of variation of the angle α,
one crack tip moves toward the edge of the half-plane, whereas the other tip moves
away from the edge. Hence, the values of the angle α guaranteeing the extremum of
�FII are different for different crack tips. It follows from the dependences presented
in Fig. 4.29 that, as the slope of the rectilinear subsurface shearmacrocrack increases,
the SIF range �FII attains its minimum value and then its maximum value first at
the right crack tip (this is the driving tip as follows from the values of �FII at the
extreme points) and then at the left tip.

Summarizing the arguments presented above consideration, we conclude that the
higher the values of the SIF range �FII in the initial stage of crack propagation, the
higher the probability for this crack to begin the process of its propagation. Hence,
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Fig. 4.30 Dependences of
the normalized SIF �FII
range at the left and right tips
of a horizontal crack on the
relative length ε

we can assume that the most and least hazardous slopes of the subsurface crack are
α = α* = 75° and α = 25°, respectively (we make choice among the values of �FII

for the right tip because this is the driving tip in the analyzed case).
Critical length of the horizontal subsurface crack. As a result of calculations

similar to those performed above for the SIF range �FII at the driving crack tip
as a function of the relative length ε, we get the range of values of ε, for which
�FII continuously increase and, hence, guarantee the permanent growth of the crack
(provided that �FII(ε) ≥ �K IIth). In particular, the dependences constructed in this
way also indicate the values of ε = b/a guaranteeing max �FII(ε). Thus, we write
the condition similar to (4.10) in the following form:

∂
[
�FII(ε)

]

∂ε

∣∣∣∣∣
ε=ε∗

= 0. (4.11)

It is worth noting that the presence of the maximum values of �FII at the left and
right tips of a horizontal subsurfacemacrocrack imposes restrictions on the rectilinear
growth of the crack by the shear mechanism because�FII increases only in a certain
range of values of the relative crack length ε. Hence, the larger the interval, the larger
(more dangerous) the crack size.

It follows fromFig. 4.30 that, for the right branch of the horizontal crack, the range
of values of ε in which the SIF range �FII increases, is much larger, than for the left
branch. Hence, when the left crack tip stops, the right tip continues to propagate for a
certain time. Moreover, the SIF range�FII at the left crack tip after the attainment of
its maximum begins to decrease faster than at the right tip, which is also an argument
for the validity of the observations made above about the possibility longer growth of
the right branch of the crack. At the right and left tips, �FII(ε) attains the maximum
values for ε+∗ = 2.2 and ε−∗ = 1.7, respectively.

We also note that, despite the horizontal location of the crack in the body, the
values of the SIF range �FII at the right tip exceed the values of �FII at the left tip
by 5%.

Characteristic depths of location of horizontal subsurface crack. The depths
of location subsurface macrocrack noticeably affect both the stress-strain state at the
tip and its subsequent propagation. It is known that the horizontal subsurface cracks
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Fig. 4.31 Dependences of
�FII(δ) at the right tip of a
horizontal subsurface
macrocrack for various
values of the friction
coefficient f

initiated and propagating in the material form a certain strip of their accumulation
(the experimental data give the optimal relative depth of their location of about
δ = d/a ≈ 0.7), where the indicated development is most probable for these cracks.
Therefore, the value of depth is, as a rule, chosen in the vicinity of the indicated
value.

In the present work, the depth of location horizontal shear macrocrack is deter-
mined by analogywith the hazardous orientation (angle α*) and the interval of critical
lengths. For this purpose, we determine the presence of maximum at the right crack
tip (which is driving for the given directions ofmotion of the counterbody and friction
forces) in the plot of the function �F∗

II (δ). It is clear that the problem posed in this
way possesses a solution only with a single extremum in the indicated dependence,
and this extremum determines the required depth δ. The corresponding necessary
condition can be represented in the following form:

∂
[
�F+

II (δ)
]

∂δ

∣∣∣∣∣
δ=δ∗

= 0. (4.12)

The results of calculations are presented in Fig. 4.31, where each plotted depen-
dence has a point ofmaximum.Hence,most likely, the cracks aremainly concentrated
at depths of about δ = δ*, thus guaranteeing the highest value of �F+

II .
By analyzing the influence of the friction coefficient f on the value of δ*, we

conclude that the zone (depth) of favorable propagation shifts toward the rolling
surface as the indicated coefficient increases. Thus, for f = 0 and f = 0.5, the
hazardous depths of location are δ* = 0.6 and δ* = 0.5, respectively. Recalculating
to the known sizes of the contact section (e.g., for a wheel-rail couple with 2a =
14 mm), we get the depth range d* = 3.5…4.2 mm.
The accumulated results are in good agreement with the results obtained in [59].
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Consequences

1. The SIF |K II| and the maximum value of the SIF range �K II strongly decrease
(Figs. 4.27 and 4.28), as the friction coefficient f c between the faces of horizontal
and inclined cracks increases, as in the case of edge cracks (Sect 4.1.1).

2. The SIFK II at both tips of the inclined cracks attain themaximum absolute values
when the contact load moves over the crack center (Fig. 4.28); at the same time,
for horizontal cracks, these values are attained if the load has already passed over
the crack (Fig. 4.27).

3. The most hazardous slope of the subsurface crack is realized for the angle
α* = 75°, while the safest angle is α = 25° (for a fixed configuration of the
parameters f, f c, ε and δ; see Fig. 4.29).

4. For the right tip of the horizontal shear subsurface crack, the interval of relative
crack lengths ε for which the SIF range �K II increases is much larger than for
the left tip. Hence, after the stop of the left crack tip, the right tip continues to
propagate for a certain time.

5. The increase in the friction coefficient f between rolling bodies shifts the zone of
favorable development of horizontal subsurface cracks toward the rolling surface
(Fig. 4.31).

4.2.2 Subsurface Crack in Contact Zone Under Normal
Opening Conditions

The stress-strain state in the zone of contact rolling is characterized by a high gradient
and rapidly varies due to the relativemotion of the rolling bodies [92]. Hence, the tips
of the subsurface crack readily pass from the zone of compression into the zone of
tension. Thus, according to the computational model (Chap. 2), the process of crack
growth is controlled by the maximum values of the parameter K Iθ and estimated by
using the σθ-criterion. Under these conditions, there exists a possibility of curvilinear
crack growth, including the possibility of crack propagation toward the edge of the
body and, hence, the formation of spalling-type defects. In addition, the mode I stage
of crack propagation is of interest due to the possibility of tracing the specific features
of propagation of both tips of the curvilinear crack in the process of cyclic contact
of rolling bodies.

Influence of the operating parameters of rolling couple on the mixed-type
stress intensity factors KIθ at the tips of subsurface crack under the conditions
cyclic contact. First, we consider the general case of subsurface crack oriented at
any angle to the edge of the half-plane. We performed calculations for various angles
of inclination α of the initially rectilinear crack to the boundary of the half-plane
(α = 0; ±π/12; ±π/6; ±π/4; ±π/3; π/2).

In Fig. 4.32, we show the plots of the stress intensity factors for an arbitrarily
oriented subsurface crack depending on the location of the contact load on the edge
of the half-plane. It follows from the presented results that if the contact load moves
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Fig. 4.32 Normalized SIFs F±
I,II(λ) depending on the location of contact load and the angle α of

crack orientation; f = 0.3; δ = d/a = 0.7

along the edge of the half-plane from the right to then left, then an arbitrarily oriented
crack is open (K±

I > 0 and δ(t) = v+
n (t) − v−

n (t) > 0; see relation (3.218)) if the
contact load is located at a sufficiently large distance to the right from the right crack
tip (λ = x0/a > 2.0). This range of λ is large because the values of SIFs F±

I (λ) slowly
decrease to zero. The larger the slope of the subsurface crack to the horizontal, the
higher the maximum values of the SIFs F±

I (λ). The maximum values of F±
I (λ)

increase with the relative crack length. At the right crack tip, the stress intensity
factors FI(λ) are higher than at the left tip (the same trend is also observed for the
absolute value of the coefficient |FII(λ)|).

Horizontal crack. To study the influence of the friction coefficient f on the values
of the normalized SIFs FI and FII in a contact cycle, we now consider a horizontal
subsurface crack located at a relative depth δ = d/a = 0.7 and has the relative length
ε = b/a = 0.5.
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Fig. 4.33 Normalized SIFsFI andFII at the right and left tips of a horizontal subsurfacemacrocrack
depending on the location (λ) of the counterbody for different values of the friction coefficient f

Since the maximum value of contact pressure p0, which has no influence on the
normalized SIFs FI and FII, and the friction coefficient f remain basic operating
parameters in the opening stage of crack propagation, we study the dependences of
the SIF F±

I and F±
II on the friction coefficient f for a single rolling cycle. These

dependences (Fig. 4.33) enable us to determine the driving tip of the crack and
indicate thee locations of the counterbody guaranteeing the absence of contact of the
crack faces (in this case, the necessary condition K I > 0 is satisfied).

The presented plots show that the increase in the friction coefficient f in contact
between the rolling bodies leads to a significant increase in the SIF FI at the right
and left crack tips and shifts the value of λ corresponding to the maximum of FI

to the right. Further, since the positive sign of FI shows that the crack is open at
the corresponding crack tip. Moreover, an increase in its values directly affects the
range of λ for which the crack remains open. Hence, for high values of the friction
coefficient f, this range of λ is always larger than for low values.

We also note that the values of FII in the analyzed interval are, as a rule, negative.
Hence, the increase in the friction coefficient f causes an increase in |FII| at the right
and left crack tips.

Further, we study the influence of the relative crack length ε and the depth of its
location under the surface on the SIF at the right and left tips. We also computed the
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Fig. 4.34 Normalized SIFs F±
I,II(λ) for the horizontal crack depending on the location (λ) of the

contact load; δ = d/a; f = 0.3; α = 0°

stress intensity factors F±
I (λ) and F±

II (λ) in the course of motion of the counterbody
along the edge of the half-plane. The results of calculations are presented in Fig. 4.34.

As a result of the analysis of the SIFs depicted in Fig. 4.34, we can make the
following conclusions:

• Under the conditions of the investigated problem and, in particular, for a given
direction of contact tangential forces, the range of locations of the load (the param-
eter λ = x0/a) under which the horizontal crack remains open is located to the right
of the crack and varies within the range 2.0 <λ < 9.0. The higher values ofλ are not
analyzed due to the extremely small corresponding values of the stress intensity
factors in the vicinities of the crack tips. For these values, the crack practically
does not interact with the contact load.

• If the contact load moves along the edge of the half-plane, then the stress intensity
factors F±

I (λ) and F±
II (λ) attain their maxima at certain locations. The closer the

crack to the half-plane boundary, the higher the maximum values.
• The maximum values of the SIFs F±

I (λ) and F±
II (λ) increase with the relative

length of the horizontal crack.
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Note that the plots of F+
I,II(λ) are in good agreement with the plots presented in

[68] and the plots for the SIF FII (λ) in Fig. 4.34 are presented solely for the values
of λ such that K I (λ) > 0.

In order to determine the configurations of values of the operating parame-
ters, orientations, lengths, and the depths of location of the crack, as well as the
characteristics of cyclic crack growth resistance of the material for which we observe
the transition from the stage of crack propagation by the shearmechanism to the stage
of propagation by the openingmechanism,we plotted the dependences ofFIθ on these
parameters. On the basis of these dependences, we established the values of the angle
α and length ε such that, after their attainment, the macrocrack propagates by the
opening mechanism (i.e., the condition maxK±

Iθ > �KIth is satisfied) for high- and
medium-strength 65G wheel steels. The maximum levels of pressure p0, the length
of the contact section 2a, and the coefficient of sliding friction f between the rolling
bodies were chosen within the ranges of the operating parameters for the wheel-rail
systems: p0 = 1500 MPa and 2000 MPa, 2a = 14 mm, and f = 0.2; 0.3; 0.4.

The characteristics of crack growth resistance presented in Table 4.10 and the
indicated operating parameters enable us to determine the normalized values of FIth

corresponding to � K Ith for high- and medium-strength steels. By using the formula
F = K

/(
p0

√
πa

)
for the loads p0 = 1500 MPa and p0 = 2000 MPa, we get

в
thF 1
I (1500) = 2.97×10−2, в

thF 2
I (2000) = 2.22×10−2, F1c

Ith(1500) = 3.15×10−2, and

F2c
Ith(2000)=2.36×10−2. In Fig. 4.35a, b,wepresent the correspondingdependences.

They reveal an insignificant predominance of the left tip for the horizontal crack (α
= 0). However, as the inclination angle α increases, the right tip gradually turns
into the leading tip [i.e., F+

Iθ (α) > F−
Iθ (α)], which can be explained by the fact that it

approaches the boundary of the half-plane. By using the established values of в
thF 1
I ,

в
thF 2
I , F1c

Ith , and F2c
Ith and the fact that the obtained curves are monotonically increasing

(at least up to the angle α = 56º), we can find the slopes of the crack starting from
which it may propagate (by the opening mechanism). For f = 0.4 and the left crack

tip, the load p0 = 1500 MPa (i.e., the values of в
thF 1
I and F1c

Ith) corresponds to the
angles α = 33° for high-strength steel and to α = 40° for medium-strength steel. At

the same time, for the load p0 = 2000 MPa (i.e., for в
thF 2
I and F2c

Ith), we get the angles
α = 17° and α = 19° for the high- and medium-strength steels, respectively. For the
right tip, the load p0 = 1500 MPa corresponds to the angles α = 20° and 22° for
high- and medium-strength steels, respectively. Moreover, for p0 = 2000 MPa, we
get α = 13° and 14° for high- and medium-strength steels, respectively. In addition,
it follows from Fig. 4.35b that the threshold values of F1

Ith and F2
Ith can be attained

for the friction coefficient f = 0.3 at the right crack tip. In this case, for p0 = 1500
and 2000 MPa, we, respectively, obtain α = 44° and 30° for the high-strength steel
and α = 48º and 32º for the medium-strength steel. As follows from Fig. 4.35a, b,
for the friction coefficient f = 0.2, the threshold values of F1

Ith and F2
Ith under the

same conditions are not attained at the tips for any orientation.
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Table 4.10 Characteristics
of cyclic crack growth
resistance of wheel steels [82]

Steel �K Ith � K*
I �K Ifc n

MPa·(m)1/2

High-strength wheel steel 6.6 27.5 65 3.1

Medium-strength wheel steel 7.0 29.8 100 3.2

Fig. 4.35 Normalized SIFs F±
Iθ depending on a, b the angle α of inclination of the crack to the

horizontal and c, d the relative length ε of the horizontal crack for different values of the friction
coefficient in the case of contact of rolling bodies; δ = d/a = 0.7; α = 0
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The analysis of the dependences of FIθ on the relative length ε of the horizontal

crack given in Fig. 4.35c, d shows that the threshold values of в
thF 1
I and F1c

Ith under the
load p0 = 1500 MPa are not attained in the investigated ranges of the parameters ε

and f. The crack may start to propagate by the opening mechanism only from the left
tip under the load p0 = 2000 MPa for the friction coefficient f = 0.4 and the relative
length ε = 2.0. In view of the chosen parameters of loading, we can evaluate the
probable length of spalling as follows: 2b = 2εa = 28 mm. The depth of this defect
can be found by using the parameter δ equal to 0.7. Hence, d = δa = 4.9 mm.

It is worth noting that the angle θ∗− specifying the direction of propagation of the
horizontal crack from the left tip strongly depends both on the relative crack length
ε and on the friction coefficient f. As a result, the left tip may either penetrate deeper
into the material (for small relative crack lengths) or move to the surface of the body.
This is not true for the angle θ∗+ at the right tip. A horizontal crack always propagates
from the right tip to the boundary of the half-plane. For f = 0.2, the transition from
the propagation of the left crack tip into the bulk of the material to its development
toward the boundary starts for ε ≥ 1.6. For f = 0.3 and f = 0.4, this happens for
ε ≥ 2.2 and ε ≥ 3.0, respectively.

In general, the analysis of the results presented in Fig. 4.35 demonstrates that
the increase of the friction coefficient in contact between the bodies, the slope
α of the initial crack to the horizontal, the intensity of contact pressure (the
parameter p0) and the relative crack length ε (provided that the crack is open)
promotes the onset of its propagation by the mode I mechanism (K±

Iθ ≥ �KIth).
We also note that the difference between the characteristics of crack growth resistance
of high- andmedium-strengthwheel steels (Table 4.10)weakly affects the parameters
α, f, and ε (but notp0) forwhichweobserve the transition from the shearmechanism to
the opening mechanism. The obtained results almost do not reveal the configurations
of parameters for which the horizontal crack in wheel steels passes to the propagation
by the openingmechanism in the course of rolling under the conditions of dry friction.
It is clear that the decrease in the crack resistance of the material and, in particular, in
its threshold characteristic�K Ith, the increase in the level of loading and friction (p0,
f), and the deviation of the crack from its horizontal orientation promote the transition
from the shear mechanism of crack propagation to the opening mechanism and to
the formation of spalling.

Conditions of full opening of the horizontal crack. Within the framework of
the posed problem, we assume that the development of horizontal subsurface macro-
cracks is possible only in the case of complete absence of contact of the crack faces.
Hence, the difference between the normal displacements for the crack faces (relation
(3.128)) must be always positive, namely,

�v0(t) =
(

2G

1 + æ

)(
v+
0 (t) − v−

0 (t)
) = Re

η∫

−1

u(ξ)dξ
√
1 − ξ 2

∣∣ω′(η)
∣∣

ω′(η)
=
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Table 4.11 Maximum values of the normalized mixed-type SIFs F−
I θ and F+

I θ for the right and left

tips of the horizontal macrocrack and the corresponding values of the angles of deviation θ∗− and
θ∗+

ε = b/a f = 0.3 f = 0.4

maxF−
Iθ

θ∗−
maxF+

Iθ
θ∗+

maxF−
Iθ

θ∗−
maxF+

Iθ
θ∗+

δ = d/a = 0.5

0.5 0.006 −1.190 0.007 −1.110 0.014 −1.174 0.015 −1.092

1.0 0.009 −1.202 0.010 −0.999 0.018 −1.193 0.021 −1.002

2.0 0.011 −1.218 0.009 1.180 0.019 −1.223 0.010 0.035

3.0 Contact of the faces Contact of the faces

δ = 1.0

0.5 0.003 −1.171 0.003 −1.150 0.008 −1.152 0.008 −1.130

1.0 0.005 −1.184 0.005 −1.105 0.011 −1.162 0.012 −1.082

2.0 0.007 −1.190 0.008 −1.005 0.015 −1.175 0.017 −0.990

3.0 0.008 −1.185 0.008 1.215 0.016 −1.186 0.020 −0.861

4.0 0.009 −1.196 0.011 1.198 0.016 −1.198 0.018 −0.616

5.0 0.009 −1.204 0.014 1.210 0.016 −1.210 0.020 1.190

6.0 0.009 −1.212 0.016 1.203 0.015 −1.218 0.023 1.202

7.0 0.008 −1.219 0.018 1.206 0.015 −1.225 0.025 1.225

8.0 0.008 −1.224 0.020 1.216 Contact of the faces

9.0 0.008 −1.228 0.022 1.230 Contact of the faces

10.0 Contact of the faces Contact of the faces

= − 2

N
Re

N∑

n=1

u(sn)
N−1∑

r=1

Tr (sn)Ur (η)

r

∣∣ω′(η)
∣∣

ω′(η)
> 0, | η | < 1,

(4.13)

Therefore, it is necessary to establish the values of the operating factors and the
parameters of crack for which condition (4.13) is satisfied.

For this purpose, we first construct the table of maximum values of the SIF FIθ

at the right and left tips of an open subsurface crack for different values of the
relative depth δ, relative length ε, and friction coefficient f. These results are shown
in Table 4.11.

It follows fromTable 4.11 that, for large depths (δ= 1.0), the horizontal subsurface
crack is open even for large relative lengths ε ≈ 7.0 (which, in turn, indicates the
possibility of long-term stage of crack growth by the mechanism of shear). At the
same time, as the crack approaches the contact surface (δ = 0.5), the admissible,
from the viewpoint of openness, relative crack length decreases down to the value
ε = 2.0. The increase in the friction coefficient f also has a similar influence on the
interval of lengths for which the subsurface crack remains completely open. Thus,
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Fig. 4.36 Diagrams of full
(along the entire crack
length) normal opening of
the horizontal subsurface
crack

for δ = 1.0, the transition from f = 0.3 to f = 0.4 decreases the maximum admissible
length to ε = 2.0.

The described phenomenon of partial or complete crack closure (contact of its
faces) is explained either by the approaching of the contact load (decrease in the
relative depth δ) or by the increase in the tangential component of the load caused by
the increase in the friction coefficient f. This yields the following important conclu-
sion: the high-intensity external load (the distance to the counterbody is compensated
by the level of loading) suppresses the development of long horizontal subsurface
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cracks by the opening mechanism.We also note that the increase in the relative crack
length, its approach to the contact surface, and the increase in the friction coefficient
f cause an increase in max FIθ and, hence, the growth of the SSS at the crack tip in
a rolling cycle.

Wenowsupplement the obtained results byplotting the diagramof normal opening
displacements of the faces of subsurface macrocrack in the coordinate system (λ–ε)
for various values of the relative depth δ and the friction coefficient f in contact
between the rolling bodies (Fig. 4.36).

By using Fig. 4.36, we canmake the following prediction: A horizontal subsurface
crack is completely open only if the counterbody is located to the right of its center.
The ranges of λ in which the crack is completely open enlarge for short cracks and
strongly decrease for long cracks as the friction coefficient f increases and as the
crack center approaches to the boundary of the body.

Consequences

1. The increase in the friction coefficient f in contact between the rolling bodies
noticeably increases the values of the SIF FI at the right and left tips of the
subsurface crack.

2. The horizontal subsurface crack is completely open within the analyzed ranges
of parameters of the problem only in the case where the counterbody is located
to the right from its center.

3. The range of locations of the counterbody forwhich the crack remains completely
open is noticeably extended as the coefficient of sliding friction between the
rolling bodies increases.

4. At large depths (δ = 1.0), the horizontal subsurface crack is open even for large
relative lengths ε ≈ 7.0 (which, in turn, reveals the possibility of realization of a
long-term shear phase of crack propagation). However, as the crack approaches
the contact surface (δ = 0.5), the relative crack length admissible from the view-
point of openness decreases to ε = 2.0.

4.2.3 Subsurface Cracks Growth Paths

The results of investigations of subsurface cracks presented above reveal numerous
crucial conditions, which should be satisfied in order to guarantee that the crack
propagating by the mode I mechanism would form a spalling-type defect. Unlike the
case of the edge crack, for this purpose, it is now insufficient to guarantee that the
mixed-type SIFK Iθ is greater thanK Ith (the threshold of crack growth by the opening
mechanism). Since the liquid does not penetrate into the subsurface crack and, hence,
does not wedge out this crack, it is necessary to perform permanent control of the
absence of contact of the crack faces under condition (4.13) in the process of growth
of this crack. However, this is also insufficient to initiate spalling. In this case, it is
necessary to guarantee that one branch of a subsurface crack starts its development
in the direction of the rolling surface and reaches this surface prior to the attainment
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Fig. 4.37 Paths of the
subsurface crack propagation
depending on the angle α of
its inclination for different
values of the friction
coefficient f (in 75KhGST
(75XGCT) steel)

the critical value of the SIF K Iθ by the opposite branch (if they do not propagate in
the same direction). This reasoning enables us to conclude that the mechanism of
spalling is quite complicated.

Development of an arbitrarily oriented crackby themode Imechanism. In the
first stage of investigation, we focus our attention on arbitrarily oriented subsurface
cracks in 75KhGST rail steel [20, 22, 53]. We now assume that the relative depth
of location of the center of subsurface crack is equal to δ = 0.7 and set the relative
length ε = 0.5. This enables us to freely orient a crack in the damaged body.

The analysis of the growth paths of arbitrarily oriented subsurface cracks depicted
in Fig. 4.37 enables us to make the following conclusions: Within the ranges of the
analyzed parameters characterizing the mutual friction of contacting bodies, as well
as the length and location of the initial crack in the rolling body, the process of crack
growth always occurs in the opposite directions from the left and right tips. The
development of the crack in the direction of the edge of the half-plane occurs only
from the tip nearest to this edge (in this case, this is the driving tip), and the branch
of the crack path from the other tip slowly grows into the bulk of the material. The
length of this branch of the crack path at the tip remote from the edge of the half-
plane is always much smaller than for the tip close to the edge. This can be explained
by the higher values of the SIF K Iθ at the tips closer to the surface, which, in turn,
leads to higher crack growth rates. Hence, the branches of the path of the inclined
subsurface macrocrack propagating into the bulk of the material are not seriously
dangerous due to their small lengths and growth rates. The decrease in the friction
coefficient between contacting rolling bodies causes an insignificant deviation of the
paths toward the direction of motion of the contact load for the branches of the crack
approaching the boundary of the half-plane. The behavior of the friction coefficient
f does not exert any influence on the paths propagating from the crack tips remote
from the half-plane boundary.
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Fig. 4.38 Dependences of the paths of a horizontal crack propagation on the relative depth of its
location δ = d/a and the relative length ε = b/a (75KhGST (75XGCT) rail steel)

Note that the characteristics of crack growth resistance of 75KhGST steel
(Table 4.4) are required for the construction of the paths by using relation (2.32).

Horizontal crack. Formation of spalling. We now study specific features of
the development of subsurface cracks in the zone of rolling contact in RSB12 and
75KhGST (75XGCT) rail steels.

First, we consider a simple case in which the process of growth of a horizontal
subsurface crack in the stage of shear is not studied and the crack length is postulated
and guaranteed by the condition of normal opening displacement of the crack over the
entire its length and the condition of crack growth by the normal openingmechanism,
i.e., by the condition maxK Iθ >�K Ith at both tips. In this way, we construct the paths
(trajectories) of growth of the subsurface horizontal crack by the mode I mechanism
for 75KhGST rail steel depending on the depth of location of the crack and the
friction coefficient between the rolling bodies (between the wheel and the rail under
the conditions of dry friction). The chosen values of the relative crack length are
shown in Fig. 4.38 (starting from ε = 1.0).

For the long horizontal subsurface cracks (Fig. 4.38) located at small relative
depths (δ = 0.7 and 1.0), we see that the variations of the relative crack length
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strongly affect the initial directions of its propagation from the tips and may lead to
their sharp changes. For the relative crack length ε < 2.0, the crack develops into the
bulk of the material from the right tip and to the boundary of the body from the left
tip (a similar trend of growth of a horizontal crack was also discovered in [69]). For
longer cracks with ε ≥ 2.0, their development from both tips is realized toward the
boundary of the body. In this case, all crack growth paths are almost perpendicular to
the boundary. After an insignificant period of growth, the faces of the horizontal crack
come in contact (at that time, the calculations are terminated) and the crack growth
is decelerated or completely stopped (according to the σθ-criterion). Note that, for a
small depth of location of the subsurface crack (δ = 0.2), the crack faces are initially
in contact prior to its growth for all analyzed values of the friction coefficient (f =
0.2…0.4) and the relative crack length (ε = 0.5…10). Hence, it is quite difficult for
a horizontal crack to appear on the surface of the body by the mode I mechanism.

Further, we consider the case where the subsurface crack first propagates by
the shear (mode II) mechanism and then, in the stage of normal opening (mode I)
mechanism, it is described by the procedure proposed in Sect. 2.4. In the calculations
performed in the stage of shear, we used the characteristics of cyclic crack growth
resistance of RSB12 rail steel (Table 4.4).

The growth paths of the horizontal subsurface crack presented in Fig. 4.39 demon-
strate the influence of the relative depth δ, the maximum contact load p0, and the
friction coefficient f on the size and shape of a defect.

As follows from Fig. 4.39a, the crack located at the relative depth δ = d/a = 0.1
grows to the boundary of the body from both tips. The boundary is first approached
by the right branch of the crack with formation (initiation) of a spalling-type defect.
For an insignificant increase in the depth of location of the crack, the paths originating
from the left tip reach the contact surface, whereas the paths originating from the
right tip propagate into the bulk of the material. The same picture is observed as the
maximum value of contact pressure p0 increases up to 1700 MPa (Fig. 4.39b). In all
other considered cases, including the entire analyzed range of the friction coefficient
f (Fig. 4.39c), the crack penetrates deeper into the material and, therefore, creates
a potentially hazardous defect, which can hardly be detected. Note that the onset of
spontaneous crack propagation at the corresponding tip is marked by*.

It should also bementioned that the ability of subsurface cracks in rolling bodies to
form branches spontaneously propagating into the bulk of the material was indicated
in the book [98]. The authors of this book treat these defects as inadmissible.

For a horizontal crack relatively close to the contact surface (δ = 0.3 and
δ = 0.1), the specific features of its propagation are better illustrated by Fig. 4.40. In
the cases where one (driving) tip moves to the rolling surface and serves as a cause of
spontaneous fracture, which results in spalling, the other (driven) tip moves, as a rule,
very slowly from or to the boundary. In Fig. 4.41, we present a schematic diagram of
some trends of growth of the subsurface crack and the formation of contact fatigue
damage, i.e., spalling.

Thus, the increase in the distance of between crack and the contact surface, the
decrease in the maximum contact pressure, or the decrease in the friction coefficient
always lead the increase in the maximum length of subsurface shear crack.
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Fig. 4.39 Paths of a
horizontal subsurface
macrocrack propagation for
different values of a the
relative depth of location δ;
b the maximum contact
pressure p0; c the friction
coefficient f; (for RSB12 and
75KhGST (75XGCT) rail
steels)
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Fig. 4.40 Paths of the
horizontal subsurface
macrocrack propagation in
the rail steels (RSB12,
75KhGST (75XGCT))
depending on the friction
coefficient f in contact
between the wheel and the
rail and on maximum value
of contact pressure p0 for the
relative depth of the crack
location δ = d/a = 0.1 (a,
b) and δ = 0.3 (c, d);
*—condition of spontaneous
fracture �K Iθ > �K Ifc is
fulfilled; o—crack
penetrated into material and
stopped (�K+

Iθ < �KIth);
∇—calculation is stopped
because at the other crack tip
spontaneous fracture started

Consequences

1. Within the ranges of the considered parameters characterizing the mutual sliding
friction of rolling bodies, as well as the length and location of the crack in the
body, the process of growth of a crack inclined at a certain angle always occurs
in the opposite directions for left and right tips.
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Fig. 4.41 Schemes of contact fatigue defects caused by the propagation of a subsurface horizontal
crack in the rolling body: spalling of finite length (a), spalling of infinite length (b), gap (c),
spontaneous propagation of a crack and possible fracture of the product (d)

2. The length of the growth path (trajectory) of an inclined crack from the tip remote
from the boundary of the body (half-plane) is always much smaller than for the
closer tip.

3. The decrease in the friction coefficient between contacting rolling bodies causes
an insignificant deviation of the paths of an arbitrarily oriented crack in the
direction of motion of the contact load for the branches that propagating to the
boundary of the half-plane.

4. A small horizontal subsurface crack (ε < 2.0) creates a spalling-type defect only
if its depth is insignificant and in the presence of high external loads (p0) in its
close vicinity.

5. Long horizontal subsurface cracks (ε≥ 2.0) always develop fromboth tips toward
the boundary of the body, which, in turn, leads to the formation of spalling-type
defects.

6. The subsurface horizontal cracks may develop either to the surface of the rolling
body creating a spalling-type defect or a gap or into the bulk of the material
with transition to the spontaneous development for some configurations of the
operating parameters and the characteristics of cyclic crack growth resistance of
the material under the conditions of transverse shear and normal opening [21,
24, 27, 41].

4.2.4 Residual Contact Lifetime of Rolling Pair Elements
by Spalling Formation Criterion

We computed the residual lifetime by using the two-stage model [31, 40, 42]
described in Chap. 2 and applied in the present section to subsurface cracks. Since
the crack growth rate at both tips in each stage of crack propagation is not connected
with the value of �K Ifc, the critical crack growth is not simultaneously realized for
the left and right branches. Therefore, in order to determine lifetime, we choose a
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number of rolling cycles guaranteeing the validity of the condition �K Iθ > �K Ifc at
one tip [21].

Inwhat follows,we present the results of evaluation of the residual contact lifetime
of rail steels damaged by subsurface cracks according to the criterion of spalling
formation. Note that, in the stage of crack growth by the shear mechanism, it is
necessary to know the final length of the shear crack regarded, as indicated in Chap. 2,
as the initial length for the stage of normal opening. Therefore, we start the numerical
analysis of the residual lifetime from the second (opening) stage of crack propagation.

Lifetime of the elements of wheel-rail couples. Influence of the operating
parameters. The problem of durability of the railroad rails and car and locomotive
wheel couples remains quite urgent. Therefore, in view of the abundance of sub-
surface cracks, their fracturing ability, and the complexity of their examination, we
study and predict the residual lifetime according to the criterion of spalling formation
in the nearsurface layer of rails made of RSB12 or 75KhGST (75XGCT) steel.

To find the crack growth rates in rail steels, we use the Yarema–Mykytyshyn
approximation formula (2.14) [100] and the characteristics of cyclic crack growth
resistance of rail steels presented in Table 4.4. We perform calculations to evaluate
the influence both of the parameters of location of the subsurface crack and of the
operating factors, such as the level of contact load (p0), the friction force in contact
between the wheel and the rail, and the level of friction between the crack faces on
the residual lifetime.

Arbitrarily oriented subsurface crack. Consider an arbitrarily oriented subsurface
crack located in the nearsurface contact zone for the ranges of operating parameters
typical of the wheel-rail system.

The results of calculations (Table 4.12) show that:

• the increase in the friction coefficient f c between the crack faces causes a significant
increase both in the initial crack length l0τ in the stage of shear and in the lifetime
in this stage;

• the increase in the coefficient of sliding friction f between the wheel and the rail
decreases the initial lengths l0τ and l0σ and the lifetime in both stages ofmacrocrack
propagation;

• the increase in the angle of inclinationαof the crack causes an insignificant increase
in its initial length l0τ in the stage of growth by shear and a significant decrease in
the initial length l0σ in the opening stage; the lifetime increases in both stages;

• the gradual deepening of the crack into the material (the increase in δ) causes
an insignificant increase in the initial length in the shear stage and a noticeable
increase in the initial length in the opening stage; the lifetime increases in both
stages;

• a regularity similar to the previous regularity can be also obtained if the maximum
value of contact pressure p0 decreases.

Horizontal crack. For the subsurface horizontal cracks (α = 0), in Tables 4.13
and 4.14, we present the numerical data the lifetimes in the stages of propagation of
subsurface cracks by the mode II (Ngτ) and mode I (Ngσ) mechanisms, as well as the
corresponding cracks lengths.
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Table 4.12 Dependences of the residual lifetime of the nearsurface layer in RSB12 and 75KhGST
(75XGCT) rail steels damaged by subsurface cracks initially inclined at the angle α on the main
parameters of the problem p0, f, f c, and δ

l0τ, mm l0σ, mm Ngτ·10−5 cycles Ngσ·10−5 cycles Ng·10−5 cycles

f c p0 = 1500 MPa; δ = d/a = 0.5; f = 0.3; α = π/6

0.1 0.164 3.000 2.7453 2.5792 5.3245

0.3 0.407 3.000 4.4758 2.5792 7.0550

0.5 1.090 3.000 9.9840 2.5792 12.563

f p0 = 1500 MPa; δ = 0.5; f c = 0.3; α = π/6

0.1 0.498 6.871 6.4993 – –

0.3 0.407 3.000 4.4758 2.5792 7.0550

0.5 0.330 1.012 4.1331 2.2960 6.4291

α p0 = 1500 MPa; δ = 0.5; f = 0.3; f c = 0.3

π/6 0.407 3.000 4.4758 2.5792 7.0550

π/4 0.737 1.579 7.6741 5.4396 13.114

π/3 0.750 1.130 6.5885 17.037 23.626

δ p0 = 1500 MPa; f c = 0.3; f = 0.3; α = π/6

0.3 0.356 1.384 3.8261 2.4051 6.2313

0.5 0.407 3.000 4.4758 2.5792 7.0550

0.7 0.434 4.911 5.1272 2.8381 7.9653

p0, MPa δ = 0.5; f = 0.3; f c = 0.3; α = π/6

1500 0.407 3.000 4.4758 2.5792 7.0550

1300 0.540 3.458 5.8064 2.5627 8.3691

1100 0.752 3.994 8.1741 2.449 10.623

The analysis of the results presented in Tables 4.12, 4.13, and 4.14 enables us
to make the following conclusions: the variations of the friction coefficients f and
f c affect the initial length l0τ and the residual lifetime as in the case of arbitrarily
oriented cracks in the same direction but not so rapidly. The variations of the relative
depth of location δ of the subsurface horizontal macrocrack reveal a clear minimum
at δ = 0.5 both for the initial length and lifetime in the stage of shear. This confirms
the results presented in Figs. 4.39 and 4.40. As could be expected, the increase in the
maximum pressure p0 in the contact zone of rolling bodies decreases the lifetime in
both stages of crack growth. In this case, in the shear stage, the lifetime decreases
much faster than in the opening stage.

As already indicated, the horizontal subsurface crack forms spalling-type defects
not in all cases. Therefore, the parameters responsible for the formation of this kind
of defects are presented in Table 4.13 in boldface. It is worth noting that all paths
shown in Figs. 4.39 and 4.40 were constructed in the course of finding the lifetime
for this table.
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Table 4.13 Dependences of the residual lifetime of the nearsurface layer of RSB12 and 75KhGST
(75XGCT) rail steels damaged by the horizontal (α = 0) subsurface macrocrack on the main
parameters of the problem: p0, f, and f c; δ = d/a = 0.5

l0τ, mm l0σ, mm Ngτ·10−5 cycles Ngσ·10−5 cycles Ng·10−5 cycles

f c p0 = 1500 MPa; δ = 0.5; f = 0.5

0.1 0.142 2.243 2.5334 2.3488 4.8822

0.3 0.287 2.243 3.6848 2.3488 6.0336

0.5 0.573 2.243 5.4969 2.3488 7.8457

f p0 = 1500 MPa; δ = 0.5; f c = 0.3

0.4 0.287 6.079 3.7679 3.3821 7.1500

0.5 0.287 2.243 3.6848 2.3488 6.0336

0.6 0.287 1.026 3.5052 2.1001 5.6053

δ p0 = 1500 MPa; f c = 0.3; f = 0.5

0.3 0.312 1.627 7.0772 2.0356 9.1128

0.5 0.287 2.243 3.6848 2.3488 6.0336

0.7 0.307 3.601 3.9089 2.9852 6.8941

0.9 0.353 5.335 4.2383 3.4221 7.6604

1.0 0.382 6.346 4.8328 4.3622 9.1950

p0, MPa δ = 0.5; f = 0.5; f c = 0.3

1700 0.224 1.804 3.2737 2.1230 5.3968

1500 0.287 2.243 3.6848 2.3488 6.0336

1300 0.381 2.871 4.3427 2.6206 6.9633

1100 0.531 3.851 5.4911 2.9226 8.4136

900 0.795 5.594 8.1438 3.1863 11.330

Fig. 4.42 Dependences of
the lifetime Ngτ of RSB12
rail steel on the length of a
subsurface horizontal shear
crack b = a/ε

The data presented in Fig. 4.39 and 4.40 and in Tables 4.13 and 4.14 demonstrate
that it is difficult for the subsurface horizontal crack to reach the surface, i.e., to
satisfy the condition �K Iθ > �K Ith. This condition is realized under high contact
pressures (p0) for very high friction coefficients (f ). Earlier, in [26], this was shown
in the case of steels of the backup rolls of rolling mills. This probably explains the
appearance of engirdling spalling in the rolls of rolling mills.
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Fig. 4.43 Dependences of the lifetime for the shear stage of propagation of the horizontal crack
on the admissible crack length for a RSB12 rail steel; b SKH roll steel

Contact lifetime according to the criterion of admissible length of subsurface
crack. In some cases, neither the critical value of K IIfc in the stage of shear, nor the
initial value of K Ith for the opening stage can be attained at any tip of the horizontal
subsurface crack in the first (shear) stage of propagation if the crack grows along
its continuation. Therefore, the crack length in the stage of shear may take large
and hazardous sizes (Fig. 4.41). In this case, it is reasonable to introduce certain
admissible (critical) lengths that should not be exceeded by the subsurface crack. In
this connection, we computed the dependences of the residual lifetime on the admis-
sible crack length in rail and roll steels in the process of propagation of subsurface
cracks by the shear mechanism and presented these dependences in Figs. 4.42 and
4.43.

The characteristics of cyclic crack growth resistance for the SKH roll steel
are taken from Table 4.11, while the crack growth rates in the material for both
types of steel and the stages crack propagation were computed according to the
Yarema–Mykytyshyn formula (2.14) [100].

As follows from the dependences N τ
g (b) presented in Fig. 4.42, the lifetimes of the

rail and roll steels differ by three orders of magnitude, which is explained, first of all,
by different characteristics of crack growth resistance of these materials and, in par-
ticular, by the great difference between the orders of the characteristic v0 (Table 4.4)
and by different friction coefficients f c of these steels. We also note that, with the
exception of an insignificant initial section, the lifetimes of both types of steel in the
shear stage of propagation of subsurface cracks obey a linear law. This enables us
to use a linear extrapolation for the dependence N τ

g (b) without cumbersome calcu-
lations.

Consequences

1. The increase in the friction coefficient f c between the faces of subsurface horizon-
tal crack causes a noticeable increase in the initial length l0τ of the macrocrack
and in the lifetime in the stage of crack propagation by the shear mechanism
(Tables 4.12, 4.13 and 4.14).
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2. The increase in the friction coefficient f decreases the initial lengths l0τ and l0σ
and lifetimes in both stages of propagation of the subsurface macrocrack.

3. The increase in the angle α of orientation of the crack causes an insignificant
increase in the initial length l0τ in the shear stage and a significant decrease in
the initial length l0σ in the opening stage; the lifetimes of the contacting bodies
increase in both stages.

4. The phenomenon of deepening of the crack into the bulk of the material (the
increase in δ) causes an insignificant increase in its initial length in the shear
stage and a significant increase in the initial length in the opening stage; the
lifetimes of the contacting bodies increase in both stages.

5. The increase in the maximum pressure p0 in the contact zone of rolling bodies
causes a decrease in the lifetime in both stages of crack growth.

6. The lifetime in the shear stage of propagation of the subsurface horizontal crack
increases as a linear function of crack length.

4.2.5 Conclusions

• The values of the SIF K II at both tips of an inclined subsurface crack attain their
maximum absolute values if the contact load moves over the crack center. For the
horizontal crack, the maximum absolute values are attained when the load has
already passed the crack (Figs. 4.27 and 4.28) in moving from the right to the left.

• The increase in the friction coefficient f in the contact zone between the rolling
bodies strongly increases the SIF K I at the right and left tips of the horizontal
crack and extends the interval of locations of the counterbody for which the crack
remains completely open in the contact cycle.

• The increase in the friction coefficient f between the rolling bodies shifts the depth
of location of the horizontal crack, which is favorable for its propagation by shear,
to the side of the rolling surface (Fig. 4.31) and decreases both the initial lengths
l0τ and l0σ and the residual lifetime in both stages of macrocrack propagation.

• The increase in the friction coefficient f c between the crack faces causes a signifi-
cant decrease in the SIF |K II| and in the amplitude �K II in a rolling cycle, as well
as an increase in the initial length l0τ of the macrocrack in the shear stage and a
significant increase in lifetime in this stage (Tables 4.12, 4.13 and 4.14).

• Subsurface horizontal cracks may propagate either toward the rolling surface and
form a spalling-type defect or a gap or into the bulk of the material with transition
to spontaneous propagation for some configurations of the operating parameters
and the characteristics of cyclic crack resistance of the material in the stages of
transverse shear and normal opening.

• Within the ranges of the analyzed parameters, the horizontal cracks located at
small distances from the rolling surface (δ = d/a = 0.1…0.3) may cause spalling
for high levels of contact pressure (p0); the cracks located deeper (δ = 0.3…0.5)
exhibit a trend to long-term propagation under the surface, and the deep cracks
(δ = 0.5…1.0 and more) under the conditions of high contact friction (f = 0.5)
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and high levels of p0 may form branches with their spontaneous propagation into
the bulk of the material (Figs. 4.39 and 4.40).

4.3 Rolling Under Dry Friction Conditions or Contact
Surface Wetting. Squat (“Dark Spot”) Defects

4.3.1 Foreword Theses

The process of operation of railroad rails (under the conditions of rollingwith sliding)
is accompanied by the formation of defects of various types [60, 74, 102], including
hazardous nearsurface squat defect (Fig. 4.44a) appearing on the running surface of
the rail in the final stage of its development in the form of a “dark spot” (Fig. 4.44b).
This defect can be encountered in backup rolls of the rolling mills [76, 77].

The squat (“dark spot”) defect is characterized by the presence of two cracks
growing from almost the same place on the working surface of the rail in the opposite
directions. One of these cracks (principal) propagates at a small angle to the rolling
surface in the direction of motion of the counterbody (train), whereas the other
crack grows slower and at a smaller angle in the direction opposite to the motion
of the counterbody. These cracks have branches growing upward to the surface and
downward into the bulk of material. As a result, the rail surface settles at this site
and becomes darker. Moreover, one of the lower branches of the principal crack
may pass through the rail and cause its complete fracture. In [63, 64], it was also
discovered that this hazardous type of the defects of rails is caused by the frequent
alternation of dry and wet conditions in the course of motion of the transport. Sato,
et al. [95] experimentally reproduced the alternation of the conditions of dry friction

Fig. 4.44 Cross section of a
squat (“dark spot”) defect in
the rail (a) [9]; defect of the
“dark spot” on the runnimg
surface of the rail (b) [61]
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and wetting. Kaneta et al. [63, 64] obtained, for the first time under the laboratory
conditions, defects of the “dark spot” quite similar to the observed on actual rails.

In the theoretical investigation of the process of propagation of surface cracks
formed in the cause of rolling, the researchers mainly restricted themselves to the
numerical analysis of the stress intensity factors and the initial directions of growth of
rectilinear cracks. As model contact loads, the researchers mainly used Hertz contact
forces, and the damaged rolling body was modeled by an elastic half-plane with edge
crack.

Some works in this direction deal with the case of dry surface rolling contact
studied with regard for the friction between the contacting crack faces. In some
zones, the crack subjected to the action of moving external loads can be either closed
(in this case, both slip and sticking of the crack faces are possible) or open. Problems
of this kind were studied by Keer and Brayant [67], Bogdanski et al. [8], Fletcher
and Beynon [49], Ringsberg and Bergkvist [93], and other researchers [4, 5, 101].
Bogdanski [7] additionally performed the numerical analysis of an important case
of rectilinear cracks with one or two branches directed downward (the so-called
“kinked” crack).

As shown in the previous section, the surface fracture of contacting bodies under
the conditions of rolling is promoted by the presence of lubricants or water. Bower
[10] studied three possible effects of the penetration of liquid into the crack: (a)
the liquid lubricates the crack faces, (b) the liquid fills the crack and transfers the
contact pressure upon its faces and (c) the liquid is partially captured by the crack and
wedges it out. The effect of lubrication of the crack faces with liquid (a) important
for the shear crack growth was also analyzed by the authors in [1, 49, 93]. The
mechanisms of crack propagation caused by the pressure of liquid (b) and (c) were
earlier considered by Keer and Brayant [67] and by Kaneta and Murakami [65]. The
specific features of the initial stage of branching of the main branch of a squat-type
defect in the backup rolls under the conditions of wetting were theoretically and
experimentally studied by Frolish et al. [51].

The problems of cracks formed in rolling bodies were also studied in the three-
dimensional statement and the plane surface semicircular and semielliptic cracks
were analyzed in [66, 78].

In what follows, we perform the theoretical investigation of the formation of
defects of the “dark spot”-typebyusing the two-dimensionalmodel of fatigue fracture
of rolling bodies formulated in Chap. 2 and also in the works [39, 87, 88].

It is known [6, 10, 67, 79] that, in rolling, the edge (surface)macrocrack propagates
first at a small angle of 15o…30o to the surface in the direction ofmotion of the contact
load by the shear mechanism. This stage of development of the crack is studied in
Sect. 4.1.1. In what follows, we comprehensively study the stage of its subsequent
development by the opening mechanism. The paths of crack propagation are studied
in the case of unidirectional rolling depending on the friction coefficient between
the rolling bodies and the initial length and orientation of the crack. The conditions
of dry friction and wetting (lubrication) between the contacting bodies are modeled
by large and small values of the coefficient of sliding friction, respectively. It is
assumed that the liquid penetrating into the crack does not wedge out its faces and
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Fig. 4.45 Computational
scheme of the model

note that the wedging influence of the liquid on the propagation of edge cracks and
the formation of pitting is studied in Sect. 4.1.2 and earlier in [16, 38, 39, 43, 44].
In the numerical calculations, we use the criterion of generalized normal opening
(σθ-criterion). The obtained numerical results are compared with the experimental
data. We also consider the problem (very important for the engineering practice) of
the mechanisms of formation of squats (“dark spots”) in railroad rails.

In formulating the calculation problem of the squat defect, we assume that one
(driven) body of a rolling couple is damaged by a surface macrocrack. A typical
linear size of the contact section and the crack length are small as compared with
the radius of curvature of the contact surface of the bodies. Therefore, instead of the
actual body, in the two-dimensional statement of the problem, we consider the elastic
half-plane weakened by an edge cut (crack). It is supposed that the rolling is cyclic
and unidirectional. The contact influence of the second body (counterbody) upon the
analyzed body is modeled by the repeated translational motion of the Hertz contact
pressure p(x) and tangential stresses q(x) along the boundary of the half-plane in one
direction (opposite to the Ox-axis, as shown in Fig. 4.45). This load is specified as
follows:

p(x) = − po
√
a2 − (x − x0)2/a , q(x) = − f p(x), |x − x0| ≤ a, y = 0,

(4.14)

where p0 is the maximum pressure at the center of the contact section of length 2a,
f is the Amontons–Coulomb friction coefficient in contact. It is assumed that the
initial crack is rectilinear, and the location of the contact section relative to the crack
mouth is specified by the parameter x0 (Fig. 4.45).

If, in the process of rolling, the bodies slip with sufficiently high friction (f ≥ 0.1),
this promotes the formation of zones of tension in the bodies, especially in the driven
body and creates a possibility for the development of cracks in these bodies by the
opening mechanism without contact of the crack faces. It is assumed that, under
the conditions of wetting, the friction coefficient in the contacting rolling bodies
decreases, and the amount of water penetrating into the crack is insufficient to cause
its wedging it the process of rolling.
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4.3.2 Shallow Edge Cracks Growth

Analysis of the SIF and the initial directions of crack growth. The stress intensity
factors K I and K II for a curvilinear edge crack in the half-plane subjected to the
action of a Hertz moving load (4.14) on its boundary and the values of these factors
in each stage of construction of the crack growth path are determined as a result of
the solution of the first basic problem of the theory of elasticity (for the half-plane
with curvilinear edge cut; see Fig. 4.45) with boundary conditions imposed on the
boundary of the half-plane:

σy(x) − iτxy(x) = −p(x) − iq(x), |x − x0| ≤ a;
σy(x) − iτxy(x) = 0, |x − x0| > a, y = 0, (4.15)

and on the crack faces

N±(t) + iT±(t) = 0, t ∈ L , (4.16)

where L is the contour of a curvilinear crack.
This problem is reduced to the solution of the singular integral Eq. (3.155) with

regard for condition (3.160) of boundedness of stresses on the edges of the crack
mouth by the method of mechanical quadratures.

The calculations were performed for different friction coefficients between the
contacting bodies f = 0.1…0.4 corresponding, in particular, to different weather
conditions of operation of the engineering wheel-rail couples. As already indicated,
the shear macrocrack is first formed in the driven body of the rolling couple. This
crack propagates almost rectilinearly at a small angle of 15°…30° to the surface.
Therefore, in our calculations, wemainly use the crack orientation angles β̄ = 180°–β
= β = 150°…165°. The relative length of the initial rectilinear crack was chosen
within the range ε = l0/a = 0.2…2.0.

The analysis of the maximum values of the mixed-type SIF K ∗
I θ in a rolling cycle

and the angles of deviation of the crack θ* was carried out for the values of the friction
coefficient f = 0.1 (wetting) and f = 0.3 (dry friction).

For a given direction of motion of the contact load (see Fig. 4.45), we show that
the crack is open if the load is located mainly to the right of the crackmouth (λ ≥ 1, λ
= x0/a). For the other λ, we observe a partial or full contact of the crack faces. Note
that our results obtained for the SIFs K I and K II within the ranges of λ, where the
crack is completely open, agree with the results of other authors and, in particular,
with the data obtained by Ringsberg and Bergkvist [93] and Benuzzi et al. [5].

In the numerical analyses, the obtained maximum values of K ∗
Iθ(

F∗
Iθ = FIθ(λ

∗) = maxFIθ(λ)
)
in a cycle are compared with the threshold value

K Ith = 4.3 MPa·(m)1/2 for 75KhGST rail steel [94]. Thus, for the maximum pressure
p0 = 1800 MPa and a half length of the contact section a = 7 mm, its normalized
value Fth = Kth/(p0

√
πa) = 0.016. (Hence, for these values of the parameters a and
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Fig. 4.46 Crack growth
paths as functions of the
friction coefficient f

p0, the crack propagates for F∗
Iθ > 0.016). The results of calculations are presented

in Table 4.15.
These results (Table 4.15) indicate that, for a low friction coefficient (f = 0.1),

the values of F*
Iθ = K ∗

Iθ/
(
p0

√
πa

)
are low: they vary within the range

F∗
Iθ = 0.008…0.020 (see Table 4.15a). Hence, only for some combinations of the

parameters ε and β, the values of F∗
Iθ exceed the threshold value and the crack begins

to grow. For large angles of orientation of the crack β = 165° and 160° (i.e., for
very small angles of inclination to the boundary), the crack is immobile. At the same
time, for β = 155° and 150°, the crack begins to propagate toward the surface (see
Table 4.15b). Moreover, long (ε ≥ 1.0) cracks start to grow for the angle β = 155°.
At the same time, the process of propagation of quite short (0.5 ≤ ε ≤ 1.0) cracks
starts for β = 150°.

For the friction coefficient f = 0.3, the values of F∗
Iθ are much higher: they change

within the range F∗
Iθ = 0.030…0.071 (see Table 4.15c), and the crack of any length

always starts to grow into the bulk of the material (see Table 4.15d).
We also studied the cracks making acute angles with the boundary (β = 10°; 20°),

which corresponds to the right branch of squat-type defects. For these cracks and
f = 0.1, the values of the SIF are very low (F∗

Iθ = 0.007…0.011) and, hence, for
the chosen threshold value of FIth, the cracks do not start. For f = 0.3, all cracks
begin to propagate; in this case, F∗

Iθ = 0.042…0.066. In general, the cracks oriented
at acute angles and starting, exhibit a trend to grow into the bulk of the material
independently of their orientation and length.

Crack paths (trajectories). Here and in what follows, the crack growth paths are
drawn in the figures by solid lines. The cracks propagate if F∗

Iθ exceeds FIth for the
chosen material and loading mode. However, the cracks may also propagate along
the other presented paths. This is realized for a different choice of the operating
parameters K Ith, p0, a and β. These cases are illustrated by the dotted lines in the
figures.

It is shown that the crack growth paths strongly depend on the friction coefficient
f between the rolling bodies: the higher the coefficient f, the stronger the trend to
propagation into the material is exhibited by the crack. On the contrary, the lower
the friction coefficient, the smaller the slope of the propagating crack to the contact
surface (Fig. 4.46).
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Fig. 4.47 Crack growth
trajectories as functions of
the angle β

Fig. 4.48 Crack growth
paths as functions of the
initial relative crack length
ε = l0/a

For the low friction coefficient (f =0.1), the behavior of the crack strongly depends
on its orientation and length.

In Fig. 4.47, we show the crack growth paths for cracks with relative length
ε = 1.0 depending on the angle of orientation β (for acute and obtuse angles). For
the sake of comparison, we also present the paths for the angles β that are not typical
of squat-type defects. There exists a range of angles β = 130…165° in which the
crack begins to propagate toward the surface of the contacting body and then turns
and grows along the surface with a certain deepening into the material. The cracks
oriented at other angles immediately turn into the bulk of the material and then grow
almost rectilinearly.

In Fig. 4.48, we illustrate the character of crack propagation with an angle of
orientation β = 150° depending on its initial length. It follows from this figure that
fairly long initial cracks starting to propagate toward the boundary of the half-plane
(ε ≥ 0.5) do not reach the rolling surface and, hence, do not induce crumbling. They
grow along the surface and somewhat deepen into the material. In this case, after
the start of these cracks, the values of F∗

Iθ along the paths decrease very rapidly and
become lower than the threshold value FIth.

The cracks with smaller lengths (the curve ε = 0.2 in Fig. 4.48) turn downward
immediately after the start and then grow rectilinearly.

Note that, in all similar cases, the final angle of crack propagation is practically
independent of the length of the initial crack and its orientation (see Figs. 4.46, 4.47
and 4.48). The crack after an insignificant initial period rectilinearly grows into the
bulk of the material at the same acute angle γ to boundary for given f to the side of
the domain of action of tangential forces. The higher the level of contact friction, the
stronger the boundary of the body “attracts” the crack (Fig. 4.46). For the friction
coefficient f = 0.1 and ε = 0.2, this angle is equal to γ ≈ 85° (Fig. 4.48).

A crack with the relative length ε = 0.3 grows for a certain time parallel to
the surface and then turns into the bulk of the material. As a result, its trajec-
tory takes the form of a “knee”. This behavior is intermediate between the cracks
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growing horizontally and the cracks growing into the material (the curves for
f = 0.18, β = 145°, and ε = 0.3 are presented in Figs. 4.46, 4.47 and 4.48, respec-
tively). We also note that this crack growth paths are in agreement with the actual
defects formed in the rails: the presented photo taken from the work by Smith [97]
(Fig. 4.49) demonstrates a crack in the form of a “knee”.

For the high friction coefficient (f = 0.3), the crack begins to propagate into
the material after its start and then grows rectilinearly at the angle γ ≈ 77° (see
Figs. 4.46, 4.48 and 4.50). As already indicated, this angle is independent of the
length and orientation of the crack.

It is worth noting that, for cracks growing into the bulk of the material, the val-
ues of F∗

Iθ along the paths of their propagation decrease slower than for the cracks
propagating parallel to the surface.

The analysis of crack paths performed under various conditions of rolling shows
that the predictions of the behavior of propagating cracks solely on the basis of
the initial values of θ* made by some researchers can be erroneous. This becomes
especially clear is we consider an example of the trajectory of propagation of a
crack in the form of a “knee”. Indeed, in order to determine the specific features of
crack propagation under the conditions of a complex stressed state typical of contact
rolling, it is necessary to construct the crack growth path.

It should be emphasized that the major part of calculations were performed for
the number of complex linear algebraic equations (the discrete analog of the integral
Eq. (3.155)) N = 70. In the construction of the path, the steps h (main step along the
path) and �λ (auxiliary step corresponding to the motion of the counterbody) are

Fig. 4.49 Development of
fatigue cracks in a rail [97]

Fig. 4.50 Crack growth
paths as functions of the
initial relative crack length
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set equal to 0.03a and 0.02a, respectively. In this case, the evaluation of the initial
values of F∗

Iθ is performed, as a rule, with three or four correct significant digits.
Mechanisms of formation of squat-type defects. Kaneta et al. [63] experimen-

tally reproduced the formation of a squat-type (“dark spot”-type) defect with the
help of a two-roll machine for rolling and sliding contact. The schematic picture
of the formation of defect of this type was proposed by Murakami et al. in [79]
(see Fig. 4.51). It was established that the nuclei of macrocracks are initiated on the
surface of the driven element of the rolling couple. First, they develop by the shear
mechanism at a small angle to the rolling surface not only in the direction of motion
of the load but also in the opposite direction.

The first (shear) stage of crack propagation in the case of rolling contact under
the conditions of wetting has already been discussed above and in the work [32].
The accumulated numerical results show that the crack rectilinearly grows along its
continuation by the shear mechanism. This is explained by the fact that the crack
growth is realized if it is closed in the vicinity of the tip. Then, obviously, K I = 0
and θ* = 0 according to the criterion of maximum tangential stresses.

The development of the left branch of the defect, i.e., in the direction of motion of
the counterbody, unlike the behavior of the right branch, is accompanied, according
to the experimental data from [63] and the scheme proposed by Murakami et al.
[79], by the intense branching toward the surface of the body and from the surface.
After a certain time, the crack separates into two main cracks. One of these cracks
propagates parallel to the surface, while the second crack turns into the depth of the
rail.

The results obtained in the present work enable us to make the following conclu-
sions: The edge gently sloping crack formed in the nearsurface layer of the rolling
body turns in the process of propagation from the surface into the depth of the mate-
rial if the friction between the rail and the wheel is sufficiently high, i.e., under the
conditions of dry friction (dry weather). This crack propagates into the bulk of the
material by the mechanism of opening displacement and gradually transforms into a
transverse (through) crack. This gives an answer (from the theoretical viewpoint) to
the question posed in the work [79] about the causes of growth of the main branch of
the crack from the boundary (see Fig. 4.51) and confirms the experimental data [92,
97] on the direction of its final growth (angle γ). Under the conditions of wetting,
if the friction coefficient in contact between the rolling bodies becomes small, then

Fig. 4.51 Formation of a squat-type defect [79]
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Fig. 4.52 Penetration of
water into cracks under the
conditions of rolling contact:
a image made in the
daylight; b fluorescent
image; [57]

the crack does not propagate into the bulk of the material but may propagate by the
opening mechanism in the direction parallel to the surface.

The right branch of a squat develops almost horizontally (parallel to the surface)
(Fig. 4.51) and, most likely, does not propagate by the opening mechanism. In the
analyzed cases, this crack may propagate by this mechanism under the conditions
of dry friction with deepening into the material (Fig. 4.47) or, possibly, toward the
surface under the conditions of wetting (Figs. 4.55, 4.56 and 4.57).

The nature (mechanism) of formation of the right branch of the squat can be, in
our opinion, explained by using the results obtained in Sect. 4.1.1 (“Edge crack in
the contact zone under the conditions of transverse shear”). In Fig. 4.13a, we present
the plots of the function �FII(β) for f = 0; ε = 0.3; f c = 0…0.5. For the indicated
configuration of values of the parameters (in particular, f = 0), we revealed the third
maximum of the function �FII(β) realized for the angles of inclination of the crack
β = β∗

3≈ 15°…20°, i.e., for the angles of propagation of the right branch of the squat.
The condition of practical absence of sliding friction between the wheel and the rail
(f = 0) is realized in the case of rolling of car wheels in the mode of motion of
“by inertia”. This, possibly, an answer to the question: What is the mechanism of
formation of the right branch of a squat? Hence, we assume that the right branch of
the squat develops by the mechanism of transverse shear under the car wheels.

In Fig. 4.51, we also present schematic diagrams of small branches originating
from the left branch of the defect and directed toward the rolling surface. In the
general case, they are potentially dangerous because, under certain conditions, they
may lead to crumbling of fragments of thematerial from the rail surface. It is possible
to assume that themechanismof their growth is connectedwith the negative influence
of liquid penetrating into the squat. In Fig. 4.52, it is seen how water penetrates into
the cracks and reaches their tips.
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Fig. 4.53 General scheme (a); trajectories of propagation of an initially rectilinear crack as
functions of the relative length εT = lT/l0 of a section of action of the liquid (b) [28]; trajecto-
ries of propagation of an initially curvilinear crack (l1 = ε1l0 = 0.5l0) as functions of the relative
length εT = lT/l0 of the zone (c) [26]; the dashed line is the trajectory of propagation of an initially
rectilinear crack under the action of contact load (see Fig. 4.48)

We now study the problem of possible influence of the wedging action of liquid
on the subsequent propagation of the edge crack. Consider a simplified version [28]
in which a section of length lT (starting from the crack tip) is subjected to action of
uniformly distributed pressure with intensity pT (Fig. 4.53a). In this way, we model
the pressure of liquid near the crack tip in the absence of contact load on the boundary.

As already indicated, for small f, the values of F*
Iθ are low. However, the results of

numerical calculations indicate that, even in the presence of the lowest pressure upon
the crack faces, the picture changes [28]. Indeed, for an initially rectilinear crack and
for an initially curvilinear crack formed under the conditions of rolling with wetting
(Fig. 4.48), the values of F*

Iθ are much higher than in the absence of the influence of
wedging liquid. Moreover, they almost do not decrease as the crack grows even for
relatively low pressures. The crack propagates to the boundary more rapidly or more
gently depending on the degree of filling of the crack by the liquid (Fig. 4.53b, c).
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Thus, it is theoretically shown that the pressure of a liquid at the crack tip plays the
decisive role in the formation of pits on the rolling surface.

It is clear that, for a more exact analysis of the development of cracks under the
conditions of wetting in the case of contact rolling interaction, it is necessary to
consider the combined of action of the load applied on the boundary and the pressure
of liquid wedging the crack faces out.

Generalizing our arguments concerning the formation of defects of the squat-type
(see Fig. 4.51), we can make the following assertions:

• in the initial stage, the left and right branches of the squat propagate by the shear
mechanism (mode II crack growth in Fig. 4.51); it is assumed that the right branch
of the defect is initiated and propagates by the mode II mechanism in the process
of rolling of the car wheels “by inertia”.

• the process of propagation of the left branch is accompanied by the formation of
many branches directed both to the rolling surface and into the bulk of thematerial.
The growth of branches to the surface (upward branching cracks) is explained by
thewedging action of the pressure of liquid penetrating into the defect. In the course
of time, these cracks may appear on the surface and form pits. In combination with
the squat, they manifest themselves on the rail surface as a “dark spot”;

• the lower branches (downward branching cracks) of the left principal branch prop-
agate under the conditions of dry weather by the openingmechanism. In the course
of time, one of these cracks may transform into a through crack (transverse defect)
and cause a catastrophe.

4.3.3 Branched Crack

This problem is studied with an aim to investigate the nature of squat-type defects
more completely (see Subsection 4.3.2). The damaged driven rolling body ismodeled
by the elastic isotropic half-plane damaged by an edge two-link crack (Fig. 4.54).
For simplicity, we assume that the initial separate links of the branched crack are
rectilinear. We also accept that the coefficient of sliding friction f between the rolling
bodies varies within a fairly broad range covering the conditions of dry friction and
boundary lubrication between the contacting bodies. It is also assumed that, under
the conditions of lubrication, solely the level of friction in contact between the rolling
bodies decreases, while the medium does not penetrate into the cracks in amounts
sufficient to wedge them out. We also believe that the some branches of the crack
grow by the opening mechanism. A defect is modeled by a system of two cracks with
commonmouth on the boundary of the rolling body. Assume that one of these cracks
is inclined at an acute (β1 = 5…30°) angle to the boundary of the half-plane (in the
direction of contact tangential forces) and that the second crack is inclined at an
obtuse angle (β2 = 150°) (Fig. 4.54). We study the cracks growth paths (trajectories)
for both cracks and three typical values of friction coefficient in thewheel-rail system:
f = 0.10, 0.15 (wet weather), and f = 0.30 (dry weather). We assume that the initial
length of the second crack (l2) is constant (ε2 = l2 /a = 1.0) and vary the length of
the first crack (ε1 = l1 /a = 0.2…1.5). The range of locations of the contact load
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Fig. 4.54 General scheme
of the problem; B is the
direction of motion of the
counterbody

guaranteeing the propagation of cracks by the opening mechanism is specified by
the condition λ = x0 /a ≥ 1.0 (with the exception of some cases). We study the case
where the first crack is inclined at a very acute angle to the surface and its tip is
close to the rolling surface, i.e., the case where a neck of length δ* = l*/a is formed
between the boundary of the half-plane and the mouth of the first crack (Fig. 4.54).
This neck is regarded as a separate crack with the same orientation as the second
crack.

The numerical analyses of the paths of propagation of these systems of cracks
(Fig. 4.54) are carried out within the framework of the model formulated in Chap. 2.
In this case, we assume that the onset of crack propagation occurs when the SIF
(K Iθ) takes a certain value K ∗

Iθ for a given load. In each rolling cycle, in the process
of motion of the zone of contact loading along the boundary of the half-plane (for
variable λ), the parameter K Iθ changes for the tips of each crack taking its maximum
values K ∗(i)

Iθ (i= 1, 2) for the corresponding values of λ = λ *(i) and θ = θ*(i). We now
assume that each of two cracks grows only for λ = λ *(i) in the direction determined
by the angle θ*(i) according to the σθ-criterion. If the contact of faces is realized in
one crack, then we suppose that its presence insignificantly affects the stressed state
of the body. The presence of contact of the crack faces is controlled by using relation
(3.218) (or (4.13)).

To determine the SIF in each stage of construction of the paths, we solved the
systemofSIE (3.141)with the additional conditions (3.147) for thefirst basic problem
of the theory of elasticity for a half-plane with curvilinear edge cracks (every time
for new cracks lengths). The system of SIE is solved numerically by the method of
mechanical quadratures (see Chap. 3 and [91, 96]). Note that we, in fact, solve a
system of 3 N linear complex algebraic equations, where N = 120…130; the step of
motion of the contact load�λ = 0.02…0.05 and the crack increment h= 0.02…0.1.
The crack growth rates are computed by the Paris formula (2.12). The calculations
were performed for the characteristics of cyclic crack growth resistance of 75KhGST
rail steel with a structure of lamellar pearlite (�Kth = 4.3 MPa·(m)1/2, �K* =
19.7 MPa·(m)1/2, p = 3.48) (Table 4.4). The crack lengths increase proportionally
to the rates of propagation of their tips in a given material for the given stress-strain
state (relation (2.32)).

The results of calculations are presented in Figs. 4.55, 4.56, 4.57, 4.58, 4.59, 4.60.
Comparing the paths of the first and second cracks with each other and with the case
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of a single crack (Figs. 4.46, 4.47 and 4.48), we conclude that, in the case where a
squat is modeled by two cracks with commonmouth on the boundary, the presence of
the first crack weakly affects the shape of the path of the second crack for all values
of the parameters (f, ε1, β1), whereas the path of the second crack insignificantly
differs from the case of a single crack. As for the first crack, it produces a branch in
the direction of the boundary for small friction coefficients (f = 0.10) in the major
part of cases (ε1, β1). The initially short cracks grow into the depth of the half-plane,
whereas the cracks with larger lengths develop to the side of the boundary (Figs. 4.55
and 4.56). For the first crack, the trend of its propagation to the boundary becomes
more pronounced as the angle of its inclination increases. In the plots, we show the
branches directed into the depth of the half-plane only for some values of ε1. The
cracks that are shorter than the cracks presented in the figures always develop into the
bulk of the material. Note that, in Figs. 4.55, 4.56, 4.57, 4.58, 4.59, 4.60, the growth
paths of the first and second cracks obtained for a given value of ε1 are depicted by
lines of the same type.

A trend to the propagation of the first crack into the bulk of the material becomes
more pronounced as the friction coefficient increases (f = 0.15) (Figs. 4.57 and
4.58). For f = 0.3, both cracks propagate in this direction for all considered param-
eters (Fig. 4.59). In this case, if the contact friction between the bodies decreases or
increases, the cracks grow slower or faster, respectively. In other words, the corre-
sponding K ∗

Iθ along the crack paths increase with the level of friction.
In the case where the first crack starts to develop to the side of the boundary of

half-plane, it almost never leads to crumbling of the rolling surface and stops due to
the contact of crack faces. In other words, its subsequent propagation by the opening
mechanism is impossible. Quite frequently, prior to the stop, the first crack turns to
the direction of action of tangential contact forces (see, e.g., Fig. 4.55 for ε1 = 1.2;

Fig. 4.55 Crack growth
trajectories for f = 0.1 as
functions of the length and
slope of the first crack in the
case where the cracks have
the common mouth (δ* = 0);
β2 = 5π/6
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Fig. 4.56 Crack growth
paths for f = 0.1 as functions
of the length and slope of the
first crack in the presence of
a neck (δ* = 0.1); β2 = 5π/6

Fig. 4.57 Crack growth
paths for f = 0.15 as
functions of the length and
slope of the first crack in the
case where the cracks have
the common mouth (δ* = 0);
β2 = 5π/6

Fig. 4.58 Crack growth
paths for f = 0.15 as
functions of the length and
slope of the first crack in the
presence of a neck (δ* =
0.1); β2 = 5π/6
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Fig. 4.59 Crack growth
paths for f = 0.3 as functions
of the length and slope of the
first crack; β2 = 5π/6

Fig. 4.60 Crack growth
paths for f = 0.1 in the case
where the load is located to
the left of the crack mouth
(λ < 0 depending on the
length of the first crack;
β2 = 5π/6

1.5). In the presence of a neck, the trend to development of the first crack to the side
of the boundary becomes more pronounced (see, Figs. 4.55, 4.56, 4.57 and 4.58).

Under the assumptions made in this section, the crack growth paths are formed
by the values of K Iθ maximum in a loading cycle, i.e., when the contact load moves
only within the range λ = x0/a ≥ 1.0. In this case, we observe no branches of the
first crack parallel to the edge of the body. The additional investigation of the shapes
of trajectories for a certain collection of values of the angles β2 of initial inclination
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Table 4.16 Values of the initial SIF and the angles θ* of the cracks deviation for f = 0.1 depending
on the length ε1 and slope β1 of the first crack in the case where the cracks have the common mouth
(δ* = 0)

ε1 0.2 0.5 1.0 0.2 0.5 1.0

β1 F∗(2)
Iθ F∗(1)

Iθ

100 0.0172 0.0171 0.0171 0.0092 0.0085 0.0108

200 0.0171 0.0171 0.0171 0.0097 0.0081 0.0082

300 0.0171 0.0171 0.0171 0.0091 0.0067 0.0056

F∗(2)
I F∗(1)

I

100 0.0001 0.0001 0.0001 0.0063 0.0064 0.0001

200 0.0001 0.0001 0.0001 0.0076 0.0007 0.0002

300 0.0001 0.0001 0.0001 0.0078 0.0001 0.0001

F∗(2)
II F∗(1)

II

100 0.0148 0.0148 0.0148 0.0043 0.0035 −0.0093

200 0.0148 0.0148 0.0148 0.0037 −0.0067 −0.0070

300 0.0148 0.0148 0.0148 0.0028 −0.0057 −0.0048

θ*(2) θ*(1)

100 −1.230 −1.229 −1.229 −0.810 −0.742 1.229

200 −1.229 −1.229 −1.229 −0.697 1.197 1.222

300 −1.229 −1.229 −1.229 −0.573 1.224 1.225

of the second crack and the values of its relative length ε2 also do not reveal any
branches of this kind. Most likely, the horizontal branch of the first crack grows
by the shear mechanism. However, some results indicating that the first crack can
develop horizontally by the opening mechanism were obtained for the case where
the load is located to the left of the crack mouth (−2.0 ≥ λ ≥ –1.0), K Iθ < K ∗

Iθ, and
the first crack is inclined at a very acute angle (Fig. 4.60). However, we note that the
convergence of values of the SIF along the path is not satisfactory in this case.

In Tables 4.16, 4.17, 4.18, 4.19 and 4.20, we present the values of the SIFs and
the angles of deviation of the crack tip θ* for both cracks corresponding to the values
of the parameters ε and β in Figs. 4.55, 4.56, 4.57, 4.58, 4.59 and 4.60. These data
indicate that if both cracks have the common mouth, then the values of SIF and θ*

for the second crack are practically independent of the length and slope of the first
crack. In the presence of a neck, this influence can be detected but it is insignificant:
For the second crack, the value of K ∗

Iθ somewhat increases with the length and slope
of the first crack. Note that, in all cases where the crack starts toward the boundary,
the values of K ∗

I at its tip are very small (K ∗
I = 0…0.0007), whereas the values of

|K ∗
II | in these cases are much larger than in the case where the crack propagates into
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Table 4.17 Values of the initial SIF and the angles θ*of the crack deviation for f = 0.1 as functions
of the length ε1 and slope β1 of the first crack in the presence of a neck (δ* = 0.1); β2 = 5π/6

ε1 0.2 0.5 1.0 0.2 0.5 1.0

β1 F∗(2)
Iθ F∗(1)

Iθ

100 0.0172 0.0167 0.0084 0.0083 0.0060 0.0111

200 0.0171 0.0158 0.0088 0.0080 0.0087 0.0079

300 0.0171 0.0167 0.0094 0.0075 0.0066 0.0054

F∗(2)
I F∗(1)

I

100 0.0000 0.0002 0.0023 0.0065 0.0042 0.0006

200 0.0001 0.0003 0.0022 0.0067 0.0001 0.0002

300 0.0001 0.0002 0.0020 0.0068 0.0001 0.0000

F∗(2)
II F∗(1)

II

100 0.0149 0.0144 0.0061 0.0032 0.0028 −0.0094

200 0.0148 0.0135 0.0065 0.0026 −0.0075 −0.0067

300 0.0148 0.0144 0.0071 0.0019 −0.0057 −0.0047

θ*(2) θ*(1)

100 −1.230 −1.227 −1.108 −0.694 −0.803 1.211

200 −1.230 −1.222 −1.121 −0.602 1.225 1.220

300 −1.230 −1.227 −1.139 −0.489 1.227 1.229

the bulk of the material. This is especially well visible in the presence of the neck
(Table 4.17). This also enables us to believe that, in the cases where θ* ≈ 1.2 for
the start of the first crack (toward the boundary), this crack may grow by the shear
mechanism.

Summarizing, we can say that the branches directed toward the boundary of the
rolling body on the right branch of a squat may be formed by the opening mechanism
in the case of wet weather (f ≈ 0.10). In this case, the left branch grows along the
boundary in the direction of motion of the counterbody. Under the conditions of dry
weather (f ≈ 0.3), the branches originating from both branches of the squat develop
into the bulk of the material.

If the contact loadmoves solely within the range λ = x0 /a≥ 1.0, then no branches
of the first crack parallel to the boundary of the body are revealed within the frame-
work of formulated model. These branches appear only if the load is located to the
left of the crack mouth (–2.0 ≥ λ ≥ –1.0) and the first crack is inclined at a very
acute angle.
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Table 4.18 Values of the initial SIF and the angles θ* of the crack deviation for f = 0.15 as functions
of the length ε1 and slope β1 of the first crack in the case where the cracks have the common mouth
(δ* = 0); β2 = 5π/6

ε1 0.2 0.5 1.0 0.2 0.5 1.0

β1 F∗(2)
Iθ F∗(1)

Iθ

100 0.0191 0.0191 0.0191 0.0158 0.0169 0.0152

200 0.0191 0.0191 0.0191 0.0179 0.0159 0.0130

300 0.0191 0.0191 0.0191 0.0178 0.0147 0.0118

F∗(2)
I F∗(1)

I

100 0.0076 0.0076 0.0076 0.0106 0.0123 0.0115

200 0.0076 0.0076 0.0076 0.0136 0.0128 0.0106

300 0.0076 0.0076 0.0076 0.0150 0.0127 0.0101

F∗(2)
II F∗(1)

II

100 0.0127 0.0127 0.0127 0.0076 0.0073 0.0062

200 0.0127 0.0127 0.0127 0.0073 0.0058 0.0046

300 0.0127 0.0127 0.0127 0.0059 0.0044 0.0037

θ*(2) θ*(1)

100 −1.041 −1.041 −1.041 −0.826 −0.762 −0.732

200 −1.041 −1.041 −1.041 −0.726 −0.665 −0.651

300 −1.041 −1.041 −1.041 −0.607 −0.559 −0.581

Table 4.19 Values of the initial SIF and the angles θ* of the crack deviation for f = 0.15 as functions
of the length ε1 and slope β1 of the first crack in the presence of a neck (δ* = 0.1); β2 = 5π/6

ε1 0.2 0.5 1.0 0.2 0.5 1.0

β1 F∗(2)
Iθ F∗(1)

Iθ

100 0.0145 0.0112 0.0109 0.0157 0.0148 0.0152

200 0.0164 0.0108 0.0110 0.0155 0.0135 0.0131

300 0.0174 0.0112 0.0116 0.0149 0.0125 0.0114

F∗(2)
I F∗(1)

I

100 0.0080 0.0087 0.0085 0.0119 0.0115 0.0002

200 0.0078 0.0084 0.0094 0.0128 0.0111 0.0004

300 0.0077 0.0084 0.0092 0.0131 0.0109 0.0097

F∗(2)
II F∗(1)

II

100 0.0082 −0.0044 −0.0043 0.0065 0.0059 −0.0131

200 0.0100 −0.0042 −0.0035 0.0054 0.0047 −0.0111

300 0.0110 0.0046 −0.0043 0.0042 0.0038 0.0035

(continued)
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Table 4.19 (continued)

ε1 0.2 0.5 1.0 0.2 0.5 1.0

β1 F∗(2)
Iθ F∗(1)

Iθ

θ*(2) θ*(1)

100 −0.936 0.711 0.706 −0.736 −0.710 1.227

200 −0.989 0.698 0.586 −0.635 −0.636 1.219

300 −1.012 −0.737 0.680 −0.528 −0.562 −0.580

Table 4.20 Values of the initial SIF and the angles θ* of the crack deviation for f = 0.3 as functions
of the length ε1 and slope β1; β2 = 5π/6

ε1 0.2 0.5 1.0 0.2 0.5 1.0

β1 F∗(2)
Iθ F∗(1)

Iθ

100 0.0420 0.0422 0.0422 0.0454 0.0532 0.0534

300 0.0415 0.0422 0.0422 0.0566 0.0521 0.0474

F∗(2)
I F∗(1)

I

100 0.0308 0.0310 0.0310 0.0299 0.0377 0.0393

300 0.0323 0.0309 0.0309 0.0478 0.0454 0.0412

F∗(2)
II F∗(1)

II

100 −0.0180 −0.0181 −0.0181 0.0221 0.0240 0.0229

300 −0.0163 −0.0181 −0.0181 0.0184 0.0154 0.0141

θ*(2) θ*(1)

100 0.759 0.760 0.760 −0.839 −0.788 −0.757

300 0.704 0.760 0.760 −0.602 −0.555 −0.556

4.3.4 Conclusions

On the basis of the comparison of the obtained results with the available engineering
and experimental data, we determine [28, 29, 37, 87] some causes and regularities
of the formation of squat (“dark spot”) defects typical of rails and backup-rolls of
the rolling mills. Thus, it is shown that:

• squat defects (specific branched systems of nearsurface cracks; see Fig. 4.51) are
induced, first of all, by frequent changes in the friction coefficient between the
contacting rolling bodies (e.g., the alternation of dry and rainy weather, violations
in the technology of lubrication, etc.);

• in the initial stage, the left and right branches of the squat propagate by the shear
mechanism (in Fig. 4.51; this if mode II crack growth); we assume that the right
branch of the defect is formed and propagates by the mechanism of transverse
shear in the process of rolling of car wheels in the mode of motion “by inertia”;
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• the process of propagation of the left branch is accompanied by the formation of
numerous new branches directed both to the rolling surface and into the bulk of
the material; the process of growth of branches to the surface (upward branching
cracks) is connected with the wedging action of the pressure of liquid penetrating
into the defect; in the course of time, these cracks can appear on the surface, and
create pits; together with the squat, they are visible on the surfaces of rails in the
form of “dark spots”;

• lower branches (downward branching cracks) originating from the leftmain branch
propagate under the conditions of dry weather by the opening mechanism; in the
course of time, one of these cracks (transverse defect) may turn into a through
crack, and finally cause a catastrophe.

4.4 Evolution of Edge Parallel Cracks System. Checks

Systems of parallel edge (surface) cracks are often formed on the races of elements
of the rolling couples [76]. In particular, this is typical of the wheel-rail systems
(Figs. 4.61 and 4.62) [76, 102]. Therefore, for the evaluation of the contact strength
and lifetime of the rolling bodies, it is important to determine the stress-strain state
or the stress intensity factors at the tips of the analyzed systems of cracks. In order to
model contact interaction in the process of rolling, it is customary to use the model
proposed by Keer and Brayant [67]. In this model, a body damaged by cracks is
simulated (in the two-dimensional case) by an elastic half-plane with cuts, while
the action of counterbody is modeled by the Hertz (elliptic) pressure translationally
and unidirectionally moving along the edge of the half-plane. There are numerous
investigations of the SIF of a single edge inclined crack available from the literature
(see, e.g., the surveys [25, 48]) both for the case where the crack is open and for the
case where the crack faces are in contact in the course of motion of the contact load
along the boundary of the body (sliding with friction or sticking). However, there
are several works [10, 25, 71] in which the kinetics of contact of the crack faces is
analyzed and the algorithms used for its evaluation are described. For a system of

Fig. 4.61 Checks on the
surface of rail head are
groups of surface cracks on
the head corner with a
distances 0.5…0.7 mm
between them [102]
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Fig. 4.62 Longitudinal
cross section of the defect
caused by contact rolling
fatigue in standard carbon
steel [30, 80]

edge parallel open cracks, the SIF was determined in [30] and some special cases of
a system of two parallel cracks were discussed in [57, 58].

In the next subsection, we study the behavior (the parameters of fracture mechan-
ics) for a system of parallel edge cracks under the condition of their propagation by
the transversal shear (mode II) mechanism, as well as the growth paths of initially
parallel open edge cracks by the normal opening (mode I) mechanism.

4.4.1 Edge Parallel Cracks in Compression Zone

We now write singular integral equations (SIE) for a system of parallel edge recti-
linear cracks in the half-plane whose faces are in contact without friction (smooth
contact) under the action of the Hertz load moving along the boundary of the half-
plane. Solving these equations, we determine the contact sections of the cracks faces
and find the stress intensity factors. The numerical results are obtained for the case
of two parallel equal inclined cracks.

Hence, we consider a contact problem of the theory of elasticity for a half-plane
weakened by a system of N parallel rectilinear edge cracks (cuts) Lj (j = 1, …, N)
of length lj inclined to the boundary of the half-plane at an angle β (Fig. 4.63). In the
mouth of the first crack, we place the main coordinate system xOy whose abscissa
axis coincides with the boundary of the half-plane. All cracks are referred to local

Fig. 4.63 Computational
scheme of the model; B is
the direction of motion of the
counterbody
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coordinate systems xjOjyj whose abscissa axes coincide with the lines of cracks. By
bj we denote the distance between the j-th and (j + 1)-th cracks.

Assume that the boundary of the half-plane suffers the action of Hertz contact
forces with tangential component. Then the conditions of the problem on the bound-
ary of the half-plane can be represented in the form

σy(x) − iτxy(x) = −p0(1 + i f )
√
a2 − (x − x0)2

/
a, |x − x0| ≤ a, y = 0;

(4.17)

σy(x) − iτxy(x) = 0, |x − x0| > a, y = 0, (4.18)

where x0 is the coordinate of the center of contact section in the coordinate system
xOy, 2a is its length, p0 is the maximum pressure at the center of the contact section,
and f is the Coulomb friction coefficient in contact between the bodies in the process
of rolling with slip.

Depending on the location of contact load on the boundary of the half-plane, the
cracks can be open (the faces are not in contact) or partially (completely) closed.
We assume that the cracks faces are in contact without friction (smooth contact). By
L ′

j , we denote a family of sections AjrBjr (r = 1, R j ) in the crack Lj along which its
faces are not in contact (open),

L ′
j =

R j⋃

r=1

L ′
jr =

R j⋃

r=1

[
A jr B jr

]
, (4.19)

Suppose that a smooth contact of the crack faces is realized in the sections
L ′′

j = L j\L ′
j . Hence, the boundary conditions on the crack faces take the form

N (t)± + iT (t)± = 0, t ∈ L ′
j ;

v(t)+ − v(t)− = 0 , T (t)± = 0, t ∈ L ′′
j ; j = 1, . . . , N .

(4.20)

We use the approach proposed in [32, 96]. If the boundary conditions (4.17),
(4.18), and (4.20) are satisfied, then the problem is reduced to the solution of a
system of singular integral equations for the derivatives of the normal and tangential
components of the discontinuities of displacements g′

n(t) and g′
τ(t) along the cracks

in the half-plane

Re �
(
t ′
) = 0, t ′ ∈ L ′

j ; Im �
(
t ′
) = 0, t ′ ∈ L j ; j = 1, . . . , N , (4.21)

where

�(t ′) =
N∑

j=1

⎡

⎢
⎣

R j∑

r=1

∫

L ′
jr

[
R(t, t ′)g′

n jr (t)dt + S(t, t ′)g′
n jr (t)dt

]
+
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+
∫

L j

[
R(t, t ′)g′

τ j (t)dt + S(t, t ′)g′
τ j (t)dt

]
⎤

⎥
⎦ − 2πP

(
t ′
)
, (4.22)

and the kernels of the SIE, R(t, t ′) and S(t, t ′), and the function P
(
t ′
)
are given by

relations (3.123) and (3.208).
In the system of SIE (4.21), we pass to dimensionless coordinates by using the

parametric equations for the crack contours Lj and their open sections L ′
jr :

t = wj (η), |η| ≤ 1, t ∈ L j ; t = wjr (η), |η| ≤ 1, t ∈ L ′
jr . (4.23)

Then the required functions take the form

ϕτ j (η) = g′
τ j (t)w

′
j (η), ϕn jr (η) = g′

n jr (t)w
′
jr (η), |η| ≤ 1. (4.24)

Assume that the shear component of the required function has a square-root sin-
gularity at the ends of the cracks:

ϕτ j (η) = uτ j (η)
√
1 − η2

, |η| ≤ 1. (4.25)

The functions g′
n jr (t) have the same singularities at the ends of the open sections

AjrBjr :

ϕn jr (η) = un jr (η)
√
1 − η2

, |η| ≤ 1, r = 1, . . . , R j , (4.26)

where uτ j (η) and unjr (η) are real functions continuous on the segment [−1, 1].
We now supplement the system of Eq. (4.21) by the conditions [96]:

1∫

−1

ϕn jr (η)dη = 0 for the inner sections(x j (Br ) > 0); (4.27)

un jr (−1) = 0 for the end sections (x j (Br ) = 0); (4.28)

uτ j (−1) = 0; (4.29)

Imϕn jr (η) = 0 ; Reϕτ j (t) = 0 . (4.30)

To determine the boundaries of the open sections L ′
jr measured from the crack

tips, we use the condition of vanishing of the SIF K I at the ends of the intervals
AjrBjr , namely:
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KI
(
A jr

) = 0, r =
⎧
⎨

⎩

1, . . . , R j , if the first open section does not border
the tip;

2, . . . , R j , if the first open section borders the tip.
(4.31)

KI
(
Bjr

) = 0, r =

⎧
⎪⎪⎨

⎪⎪⎩

1, . . . , R j , if the last open section does not border
the mouth ;

1, . . . , R j − 1 , if the last open section borders
the mouth.

(4.32)

In the open sections of the cracks faces, the following condition should be addi-
tionally satisfied:

v+(t) − v−(t) = −1 + κ

2G
Re

[(
gn j (t) + gτ j (t)

)dt
dt

]
> 0, t ∈ L ′

j . (4.33)

where κ and G are the elastic constants. In the sections with slip, we require that

N (t)± = Re[�(t)] < 0, t ∈ L ′′
j . (4.34)

Here, �(t) is given by relation (4.22).
We solve the systemof integral Eq. (4.21)with additional conditions (4.27)–(4.30)

by the method of mechanical quadratures (see Sect. 3.5 and [96]).
In order to solve the system of Eqs. (4.21), (4.27)–(4.30) in which the limits

of integration are unknown, we apply the method of successive approximations. In
order to find the zero-order approximation in the case of a single crack, we solve
the problem for a crack open along the entire its length and use condition (4.33) in
order to clarify where the crack faces are indeed open. In the case where the entire
crack is closed, we solve the problem of smooth contact along the entire its length
and use condition (4.34) to determine, where the crack faces are indeed slipping. We
make this to reveal open sections if they are encountered in the crack. Note that these
actions are performed for all cracks simultaneously and the appearance of several
open sections in each crack is possible.

If we approximately find the boundaries of open sections in the crackwith the help
of conditions (4.33) and (4.34), then we use conditions (4.31) and (4.32) for their
correction. Note that, in this case, conditions (4.33), (4.34) are satisfied sufficiently
exactly but the convergence in terms of these conditions is quite poor.

The solution of the system of SIE (4.21) and relations (4.27)–(4.30) yield the
normalized SIFs at the crack tips and at the ends of intervals AjrBjr :

F+
II j =

√

π

∣∣∣ω′
j (+1)

∣∣∣
uτ j (+1)

ω′
j (+1)

, F±
I jr = ∓

√

π

∣∣∣ω′
jr (±1)

∣∣∣
un jr (±1)

ω′
jr (±1)

,

r = 1, . . . , R j ; j = 1, . . . , N .

(4.35)
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Numerical results: SIF, maps of contact of the crack faces, checks. The cal-
culations were carried out for two identical parallel cracks (N = 2; l1 = l2 = l0) with
typical values of the operating parameters for the wheel-rail system (f = 0.1 and
f = 0.3) and the characteristic features of defects (β = 5π/6; ε = l0/a = 1.0) for
various relative distances between the cracks δ = b/a.

We use a system of dimensionless coordinates according to relation (4.23):
ηj = 2xj/l–1 (j = 1. 2). Thus, in Figs. 4.64 and 4.65, the values η = –1 and
η = +1 correspond to the crack mouth and the crack tip, respectively. Note that,

Fig. 4.64 Dependences of
the length of contact sections
of the cracks faces (a, c) and
the normalized
SIF FI, II = KI, II/(p0

√
π a)

(b, d) on the parameter λ of
location of the contact load
for one and two cracks for
coefficient of friction
between rolling bodies
f = 0.1 (ε = 1.0; β = 5π/6):
—– one crack; – • – • – first
crack; - – – – second crack;

open

crack with directions of slip
of the faces;

closed crack (smooth contact
of the faces) with directions
of slip of the faces
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Fig. 4.65 Dependences of
the length of contact
sections of the cracks faces
(a, c) and the normalized
SIF FI, II = KI, II/(p0

√
π a)

(b, d) on the parameter λ of
location of the contact load
for one and two cracks for
coefficient of friction f = 0.3
( = 1.0; β = 5π/6): —– one
crack; – • – • – fir st crack; -
– – – second crack;

open

crack with the directions of
slip of the faces;

closed

crack (smooth contact of the
faces) with the directions of
slip of the faces

in the course of our calculations, several open sections appeared in each crack but at
most one section remained at the end of iterative process.

For the correct analysis of the obtained results, we introduce the parameters of
fracture mechanics responsible for the fracture by the mode I mechanism (maxK Iθ

(λ, θ)) and by the mode II mechanism (�K II). In the case of motion of the con-
tact load along the boundary of the half-plane, the normalized mixed-type SIF
FIθ(λ, θ) = KIθ(λ, θ)

/(
p0

√
πa

)
determined according to the σθ-criterion [84] takes
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its maximum values for λ* and θ*, i.e., maxFIθ(λ, θ) = FIθ(λ*, θ*) [14]. By F∗
I and

F∗
II , we denote the values of FI and FII for λ*. The range of the normalized SIF

FII = KII
/(

p0
√

πa
)
in the course of motion of the contact load in a contact cycle

is defined as follows: �FII = maxFII(λ)–minFII(λ).
The accumulated results indicate that the behavior of the curves FII(λ) for each

crack in the system of two cracks is similar to the case of a single crack. This is
observed for various distances between cracks and for different friction coefficients
(Figs. 4.64 and 4.65).

In Fig. 4.65a, b, we see that, for the high coefficient of friction (f = 0.3), if the
load moves from the right to the left and starts to cover the mouth of one crack
(λ ≤ 1.0) or the mouths of each of two cracks in turn, the crack faces start to close
from the mouth. At the same time, the crack tips are open and FI(λ) > 0 in a fairly
large range of λ (0.3≤ λ ≤ 1.0). In the case of low contact friction (f = 0.1) realized
prior to the closure of crackmouth (λ > 1) or themouths of two cracks (in turn) by the
load, they insignificantly (without instability) close starting from the tip. However,
as soon as the load covers the cracks mouths, the cracks start to close from themouth,
the tips start to open, and the SIF FI(λ) > 0 in a quite large range of values of λ, as
in the case of large f. This result is quite important because it reveals the possibility
of crack growth by the opening mechanism when the contact load is located over the
crack. Further, if the center of the contact section is located over the mouth of one
crack or of the first crack, then they are completely closed (FI(λ) = 0). Later, they
start to open from the mouth as soon as the contact load opens the mouths (λ < −1).
However, in this case, the crack tip is closed and FI(λ) = 0.

It is worth noting that the parameter F∗
Iθ = maxFIθ(λ, θ) that controls the mode

I fracture may have two maxima in a contact cycle for each crack depending on the
friction coefficient f: One maximum is low and is observed prior to the closure of
the crack mouth by the load, while the second maximum is high and appears when
the crack is partially closed from the mouth. The second maximum of FIθ is attained
due to the high values of |FII| observed for FI > 0 (Figs. 4.64 and 4.65). Hence, if
the contact load is located directly over the crack (cracks), the fracture may occur
not only by the shear mechanism but also by the opening mechanism. In order to
reveal the predominant mechanism of crack propagation in the contact zone, it is
necessary to performmore extensive investigations with regard for the friction of the
crack faces, their initial lengths, the characteristics of crack growth resistance of the
materials in transverse shear and normal opening, etc.

The value of the parameter �FII = max FII(λ)–min FII(λ) corresponding to the
fracture by shear strongly depends on the distance between the cracks (Table 4.21).
Thus, at distances comparable with the length of the contact section (b ≈ a…2a), we
get the most pronounced weakening of the rolling surface (�FII is maximum). This
conclusion agrees with the experimental data about features of checks-type damages
presented by Zerbst et al. [102].

The numerical results presented in Table 4.21 reveal a significant mutual influence
of two parallel cracks in the contact zone of rolling bodies: For small distances
between the cracks, we observe a noticeable hardening of the rolling surface (�FII
are small) as compared with the case of a single crack. At the same time, the increase
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Table 4.21 Dependence of the normalized SIF on the friction coefficient of f and the relative
distance between the cracks δ

f δ = b/a λ * F∗
Iθ F∗

II �FII
First Second First Second First Second First Second

0.1 0.25 0.18 −0.06 0.141 0.135 −0.122 −0.117 0.244 0.301

0.5 0.21 −0.26 0.160 0.127 −0.138 −0.110 0.296 0.317

1.0 0.23 −0.71 0.162 0.129 −0.140 −0.112 0.350 0.342

1.5 0.27 −1.21 0.144 0.146 −0.125 −0.127 0.350 0.343

2.0 0.30 −1.70 0.134 0.143 −0.116 −0.124 0.346 0.346

Single 0.30 0.133 −0.1154 0.3318

0.3 0.25 0.22 −0.04 0.112 0.133 −0.096 −0.115 0.253 0.339

0.5 0.14 −0.26 0.143 0.139 −0.124 −0.120 0.309 0.359

1.0 0.32 −0.72 0.125 0.149 −0.108 −0.129 0.361 0.381

1.5 0.34 −1.20 0.120 0.153 −0.104 −0.133 0.368 0.382

2.0 0.32 −1.74 0.126 0.157 −0.109 −0.136 0.375 0.375

2.5 0.32 −2.24 0.127 0.150 −0.110 −0.130 0.372 0.370

Single 0.28 0.138 −0.120 0.367

in the distance leads to softening (�FII increase). Moreover, the presence of one
closed crack in a system of two cracks in the process of motion of the contact load
may strongly affect the SIF FI(λ) at the tip of the open crack (see, e.g., Fig. 4.64b, d
for FI (λ = 0.6)). Themaximum values of the SIF FIθ(λ,θ) (depending on the distance
between cracks) are mainly attained on the first crack for f = 0.1 and on the second
crack for f = 0.3.

The maximum and minimum of FII(λ) are attained in the case where both cracks
are in contact over the entire length. Hence, the partial opening displacements of the
cracks weakly affect the values of �FII. The plots of FII(λ) presented in Figs. 4.64
and 4.65 are very similar to the plots obtained under the conditions of smooth contact
over the entire crack length. This enables one to determine �FII by using solely the
solution of the problem of contact of the cracks over the entire length.

Note that the comparison of the results of calculations performed in the present
work with the results obtained by Bower [10] for β = 155° (π–β = 25°), ε = 0.5 and
f = ±0.05 reveals their satisfactory agreement.

4.4.2 Edge Parallel Cracks Growth by Normal Opening
Mechanism. Crumbling

In the present subsection, on the basis of singular integral Eq. (3.141) (see Chap. 3)
for a system of curvilinear cracks in the elastic half-plane subjected to the action of
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Fig. 4.66 Scheme of the
problem; B is the direction of
motion of the counterbody

model contact loads on the boundary of the plane, we compute the stress intensity
factors (SIF) for 2–5 parallel edge rectilinear cracks corresponding to various values
of the parameters of the problem. We construct growth paths for a system of (two or
three) parallel edge initially rectilinear cracks. The contact of the crack faces is not
taken into account.

Stress intensity factors [30]. Consider an elastic isotropic half-plane weakened
by a system of N parallel edge rectilinear cracks. It is assumed that the cracks have
the same length l0 are inclined at the angle β to the boundary of the half-plane, and the
distance between two neighboring cracks is equal to b (Fig. 4.66). The crack nearest
to the load is called the first crack. The crack located to the left of this crack it is called
the second crack, etc. In a section of length 2a on the boundary of the half-plane, we
impose a Hertz contact load, i.e., a normal pressure p(x) and tangential forces q(x).
They are distributed according to the elliptic law and obey the Amontons–Coulomb
law q(x) = fp(x), where f is the friction coefficient between the contacting bodies.

We refer the half-plane to the main coordinate system xOywhose origin is located
in the mouth of the first crack. The Ox-axis is directed along the boundary of the
half-plane. The contours of the cracks (cuts) Ln (n = 1, …, N) are referred to local
coordinate systems xnOnyn, whose origins are located in the mouths of these cracks.
The Onxn-axes are directed along the cracks and α is the angle of inclination of the
Onxn–axes to the Ox-axis (β1 = β2 = … = βp = β = –α).

On the half-plane boundary, we impose the boundary conditions of problem (4.17,
4.18). It is assumed that the crack faces are load free. The corresponding boundary
conditions take the form

σ±(xk) − iτ±(xk) = 0, 0 ≤ xk ≤ l0 , yk = 0 , k = 1, . . . , N ;
(4.36)

the superscripts “+” and “–” mark the boundary values of stresses on the left and
right crack faces, respectively. Relations (4.36) correspond to the case where the
cracks enter the zone of tension, open, and develop by the mode I mechanism. These
conditions are realized due to the action of sufficiently high tangential (friction)
forces in the contact zone directed from the crack in the case where the contact load
is located behind the crack (see Fig. 4.66). We now determine (under the formulated
conditions), the stress-strain state in the vicinity of the crack tips.
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By using the singular integral equations (SIE) of the plane problem of the theory
of elasticity for a half-plane weakened by a system of curvilinear cracks, we arrive
at the system of SIE (3.141) of the posed problem. The right-hand sides of the SIE
can be represented as follows (see (3.171)):

Pn(η) = p0
{
Re[(1 + i f ) (an(η) − ibn(η))]w′(η)

− [
(1 − i f )

(
bn(η)

/
an(η) − i

) × iIm
(
εw(η)eiα + γn

)

− i f
(
an(η) + ibn(η)

)]
e−2iαw′(η)

}
, n = 1, . . . , N , (4.37)

where an(η) = √
1 − b2n(η); bn(η) = εw (η) eiα

/
l0 + γn − λ; ε = l0/a;

λ = x0/a; γn = z0n
/
a .

For numerical calculations, the parameters of location of the cracks and the friction
coefficient between the contacting bodies are chosen mainly with regard for the
conditions of rolling (and fretting fatigue). Thus, the investigations are carried out
for the angles of orientation of cracks β = π/6, π/2, 5π/6, their relative lengths ε =
l0/a = 0.2, 0.5, and 1.0, and the relative distances between the cracks δ = b/l0 = 0.1,
0.5, and 1.0, depending on the distance of the contact load from the mouth of the
first crack characterized by the parameter λ = x0/a (Fig. 4.66). We take the friction
coefficient f = 0.3. Note that the surface cracks are initiated and propagate under the
conditions of rolling at the angle β ≈ 5π/6 to the boundary. At the same time, under
the conditions fretting fatigue, the surface cracks are initiated and propagate within
the range of angles π/6 ≤ β ≤ π/2.

In Fig. 4.67, we present the plots of the normalized stress intensity factors
FI,II(λ, β, ε, δ, f ) =KI,II(λ, β, ε, δ, f )

/(
p0

√
πa

)
for two cracks as functions of

the distance from the contact load to the mouth of the first crack for fixed values
of the parameters β, ε, δ, and f. The plots of the SIF FI,II(λ) for a single crack and
the same values of the indicated parameters are presented by the dash-dotted curves.
Note that the plots of FII(λ) are not shown within the range of values of λ, where
FI(λ) < 0 (Fig. 4.67b, d). Moreover, in the case of two cracks, the plots of FI(λ)
are not presented for the second crack if this parameter is negative for the first crack
(Fig. 4.67a, c). The analysis of the presented plots enables us to make the following
conditions:

• The absolute values of the SIFs and their maximum values for two cracks are, as
a rule, lower than in the case of a single crack (Fig. 4.67a–c, e, f).

• For the orientations of cracks typical of fretting fatigue (β = π/2, β = π/6,
Fig. 4.67a–d), the SIFs and, in particular, their maximum moduli for the first
of two cracks (closer to the load) are higher than for the second crack. Hence, the
first crack is responsible for the subsequent fracture.

• For the orientations of the cracks typical of rolling under the conditions of dry
friction (Fig. 4.67e, f), the values of K I for the second crack are much higher than
for the first crack. For this crack, K II is somewhat higher than K II for the second
crack. Hence, in the course of propagation of these cracks, we may observe either



www.manaraa.com

4.4 Evolution of Edge Parallel Cracks System. Checks 241

Fig. 4.67 Normalized stress intensity factors FI and FII for two cracks as functions of the distance
of from the contact load to the mouth of the first crack for the angles of orientation of the cracks β =
π/6, π/2, and 5π/6, their relative lengths ε = l0/a = 0.2 and 0.5, and the relative distance between
the cracks δ = b/l0 = 0.5; 1 —– first crack, 2 —– second crack, - – – – single crack

the predominant development of the second crack (located at a greater distance
from the load) or the simultaneous development of both cracks.

• For the angle β = π/6, the contact of crack faces is terminated (i.e., the values of
K I become positive) as soon as the load opens the mouth of the first crack moving
in the positive direction of the Ox-axis. For β = π/2, this happens for somewhat
higher λ and, for β = π/6, for even higher values of λ. This trend becomes more
pronounced as the lengths of the cracks increase;

• The sign of K II corresponding to the direction of tangential stresses in the vicinity
of the crack tips strongly depends on the angle of inclination of the cracks to the
half-plane boundary.

• The variations of the SIF for the first crack are the same, as for the case of a single
crack with the same location.
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In Table 4.22, we present the maximum absolute values of the normalized SIFs
F*
I (λ) and F

*
II(λ) for the cases of a single crack and of the first of two cracks depend-

ing on the location of the second crack. The maximum values of the SIF are most
frequently used to predict the fracture of contacting bodies. Note that, for the angle
β = π/2, the function FII(λ, δ) changes its sign in the course of motion of the load
(see Fig. 4.67d). Hence, in this case, for any curve δ = const, we present the max-
imum negative and positive values of F*

II(λ, δ) in the numerator and denominator,
respectively.

The analysis of the data presented in Table 4.22 enables us to conclude that:

• as two cracks becomes closer, the values of F*
I and |F

*
II | at the tip of the first crack

decrease to the asymptotic values (for the chosen parameters β, ε, and δ) values;
these values are lower than in the case of a single crack;

• as the distance between the cracks increases, the maximum values of the SIFs of
the first crack approach the values of the SIFs for a single crack; even for δ = 5.0,
the difference between the values of F*

I and F*
II for one crack are lower than 2%

for β = π/6 and 5π/6; for β = π/2, the difference between the values of F*
I and

F*
II is smaller than 4% and 6%, respectively.

In Table 4.23, we present the maximum absolute values of the normalized SIF
F∗
I,II at the tip of the first crack for the cases of one, two, three, or five cracks in the

half-plane, fixed sizes and locations of the cracks and variable location of the contact
load. The analysis of the results obtained for the chosen values of the parameters β,
ε, and δ enables us to conclude that:

• A “double-crack” defect (two identical parallel cracks) is less hazardous than a
single crack; in the case of appearance of the second crack, the values of F*

I at the
tip of the first crack decrease for β = π/6, π/2, and 5π/6 by 4–6%, 2–28%, and
36–62%, respectively, whereas the values of F*

II decrease by 13–64%;
• As the number of cracks increases further, the values of the SIF F∗

I,II at the tip
of the first crack (closest to the load) approaches an asymptotic value for a given
orientation of cracks, their lengths, and the distance between them. The asymptotic
values of F*

I and |F*
II| are lower than the analogous values in the case of a single

crack. On the average, for F*
I , this difference is equal to 10%, 30%, and 60% for

β = π/6, π/2, and 5π/6, respectively; for |F*
II|, the difference constitutes 40%.

• As the crack lengths increase and they approach each other, the values of F*
I and|F*

II| decrease; this trend is violated only for |F*
II| at β = π/2 as far as the influence

of distance between the cracks is concerned.

In the case of five cracks (Fig. 4.68), for the chosen values of the parameters β, ε,
and δ, we observe the trends similar to the case of two cracks (Fig. 4.67):

• The character of variations of the SIF for the first crack in the systems of two and
five cracks are similar to the case of a single crack; the character of variations of
the SIFs of 2–5th cracks in the system of five cracks are similar to the case of the
second crack in the system of two cracks.
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Table 4.23 Maximum values of the normalized stress intensity factors F*
I and F

*
II at the tip of the

first crack in the cases of one, two, three, or five cracks

β One Two Three Five

F*
I F*

II F*
I F*

II F*
I F*

II F*
I F*

II

δ = b/l0 = 0.1; ε = l0/a = 0.2

π/6 5.59 3.36 5.31 2.37 4.89 2.10 4.77 1.85

π/2 7.30 3.19 5.26 −1.77 4.98 −1.75 4.69 −1.73

5π/6 4.50 −2.98 1.87 −1.98 1.65 −1.80 1.49 −1.66

δ = 0.1; ε = 0.5

π/6 5.31 2.32 5.08 1.76 4.97 1.61 4.85 1.49

π/2 5.40 3.36 3.94 −1.43 3.73 −1.41 3.53 −1.40

5π/6 4.09 −2.47 1.55 −1.66 1.37 −1.51 1.24 −1.39

δ = 0.1; ε = 1.0

π/6 4.38 1.76 4.21 1.33 4.13 1.22 4.03 1.12

π/2 3.96 1.69 2.89 −1.08 2.74 −1.06 2.59 −1.06

5π/6 3.34 −1.88 1.18 −1.27 1.05 −1.16 0.95 −1.07

δ = 0.5; ε = 0.2

π/6 5.59 3.36 5.24 2.45 5.12 2.23 5.02 2.10

π/2 7.30 3.19 5.43 −1.62 5.18 −1.58 4.96 −1.57

5π/6 4.50 −2.98 2.40 −2.36 2.27 −2.22 2.17 −2.13

δ = 0.5; ε = 0.5

π/6 5.31 2.32 5.01 1.85 4.91 1.76 4.82 1.69

π/2 5.40 3.36 4.03 −1.35 3.85 −1.32 3.69 −1.31

5π/6 4.09 −2.47 2.00 −1.97 1.89 −1.84 1.81 −1.77

δ = 0.5; ε = 1.0

π/6 4.38 1.76 4.15 1.40 4.07 1.33 4.00 1.28

π/2 3.96 1.69 2.95 −1.03 2.82 −1.01 2.70 −1.00

5π/6 3.34 −1.88 1.53 −1.50 1.44 −1.42 1.38 −1.37

δ = 1.0; ε = 0.2

π/6 5.59 3.36 5.26 2.64 5.17 2.52 5.11 2.44

π/2 7.30 3.19 5.64 −1.45 5.43 −1.42 5.27 −1.41

5π/6 4.50 −2.99 2.90 −2.60 2.80 −2.51 2.61 −2.44

δ = 1.0; ε = 0.5

π/6 5.31 2.32 5.03 1.95 4.96 1.90 4.90 1.86

π/2 5.40 3.36 4.18 −1.22 4.03 −1.20 3.91 −1.20

5π/6 4.09 −2.47 2.50 −2.16 2.42 −2.09 2.37 −2.04

δ = 1.0; ε = 1.0

π/6 4.38 1.76 4.16 1.48 4.10 1.43 4.06 1.41

π/2 3.96 1.69 3.06 −0.94 2.95 −0.93 2.86 −0.92

5π/6 3.34 −1.88 1.92 −1.64 1.85 −1.59 1.81 −1.56
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Fig. 4.68 Normalized stress intensity factors for two and five cracks as functions of the distance
from the contact load to the mouth of the first crack for the relative crack length ε = l0/a = 0.5 and
the relative distance between cracks δ = b/l0 = 0.5: ——– five cracks, _ _ _ two cracks; 1, 2, 3, 4,
and 5 correspond to the first, second, third, fourth, and fifth cracks, respectively

• The absolute values of the SIFs of the first and second cracks in the system of five
cracks are lower than for the SIFs of the first and second crack in the system of two
cracks, respectively; in general, the defect formed by five cracks is less dangerous
than one crack or a “double” crack.

• If the cracks are inclined to the edge of the half-plane at the angle β = π/6
(Fig. 4.68a, b), then the first crack (closest to the load) is responsible for the
fracture; the SIFs and their maximum values for other cracks are lower.

• The SIFs and their maximum absolute values for the fifth crack are larger, in some
cases (Fig. 4.68b, c), than for the other cracks in the family of five cracks. In
particular, if the cracks are inclined at the angle β = 5π/6 (Fig. 4.68c, d), then the
fifth crack can be responsible for fracture.

In conclusion, we note that, in a special case of single edge crack, the obtained
results coincide with the results obtained in [45]. In the case of two cracks perpendic-
ular to the boundary, the results are in good agreement with the results from [56]. The
calculations were carried out in the case where the order of the system of complex
algebraic equations M = 80.

Growth paths (trajectories) for a system of parallel edge cracks depending
on the level of friction between the rolling bodies. Crumbling. According to the
accepted concept [36, 86], we assume that the process of crack growth is controlled
by the parameter K Iθ specifying the intensity of normal circumferential stresses at
the crack tip. In each loading cycle, in the course of motion of the contact load along
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the boundary of the half-plane (i.e., in the process of variations of λ), the parameter
K Iθ varies for each crack and takes its maximum value K ∗

Iθ for some λ = λ * and
θ = θ*. Under these conditions, the crack propagates for λ = λ * in the direction
determined by the angle θ* according to the σθ-criterion if the value of K ∗

Iθ exceeds
the threshold of fatigue crack growth K Ith for a given material. Here, we do not
consider the possibility of contact of the faces of some crack; we believe that its
presence does not affect the stressed state of the body.

Assume that the crack lengths increase proportionally to the rates of propagation
of their tips in a given material (see relations (2.32)) for the given stress-strain state.
In each stage of construction of the trajectory, we solve the system of SIE (3.141)
of the first basic problem of the theory of elasticity for the half-plane with edge
curvilinear cracks (each time for new crack lengths) with regard for the additional
conditions (3.147). By the method of mechanical quadratures, we reduce the system
of SIE to a system of M linear algebraic equations (see Chap. 3, formulas (3.145)).
The crack growth rates are given by the Paris formula

vi = C
(
K ∗

Iθi

)n
, i = 1, 2, . . . , N , (4.38)

where N in the number of cracks.
The calculations were carried out with regard for the characteristics of cyclic

crack growth resistance of 75KhGST rail steel with the structure of lamellar pearlite
(Table 4.4).

We constructed the trajectories for the systems of two (Figs. 4.69, 4.70, and 4.71)
and three (Fig. 4.72) cracks with identical and different lengths. The initial angle
of inclination of the cracks to the boundary of the half-plane (to the direction of
tangential forces in contact) β = 5π/6 is chosen according to the experimental data
[9, 75, 76, 79]. The calculations were performed for the friction coefficients between
the contacting bodies f = 0.05, 0.10 and 0.30 corresponding, in particular, to different
conditions of operation of the wheel-rail engineering couples (dry or damp weather
and lubrication).

Parallel cracks for small values of the coefficient of friction in contact between
the rolling bodies. In the case of low values of the friction coefficient (f ≤ 0.1), two
initially identical parallel cracks (l1 = l2 = l0) grow parallel to the contact boundary
in the direction of motion of the counterbody for relatively large distances between
the cracks (δ = b/a > 1.0) (Fig. 4.69a). This agrees with the trend of growth of a
single crack (Fig. 4.69b) [39, 87]. For smaller distances between the initial cracks
(δ ≤ 1.0), the first crack immediately begins to propagate into the bulk of the material
(Fig. 4.69b, c).

In Figs. 4.70 and 4.71, we illustrate the process of growth of two cracks with
different initial lengths for low friction coefficients. The obtained results demonstrate
that if the first crack is shorter than the second crack, then it mainly propagates toward
the second crack. In this case, for any fixed length of the second crack and a given
length of the first crack, there exists a certain critical distance δ* between them. The
first crack propagates toward the second crack for δ > δ* and into the bulk of the
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Fig. 4.69 Trajectories of
growth of two equal parallel
cracks as functions of the
relative distance δ between
them; f = 0,1;
ε = l0/a = 1,0; B is the
direction of motion of
counterbody

Fig. 4.70 Growth paths of
two unequal parallel cracks
as functions of the length of
the first crack; f = 0.1;
ε2 = l2/a = 1.0;
1 — ε1 = l1/a = 0.3;
2 — ε1 = 0.5; 3 — ε1 = 0.7

Fig. 4.71 Trajectories of
growth of two unequal cracks
as functions of the distance
between them; f = 0.05;
ε1 = l1/a = 0.4;
ε2 = l2/a = 1.0

material for δ < δ*. The value of δ* increases with the length of the first crack. Note
that the family of analyzed values of the parameters f, ε1,. ε2, and δ includes the
values for which the first crack closely approaches the second crack and creates the
hazard of crumbling (curve 1 in Fig. 4.70b). As the friction coefficient f decreases,
the trend toward the development of crumbling increases, especially in the case of
short (ε1 < 0.5) first crack (Fig. 4.71).
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Fig. 4.72 Trajectories of growth of three equal (a) and unequal (b) cracks; f = 0.1; a ε1 = ε2 = ε3
= 1.0; b ε1 = 0.5; ε2 = 0.7; ε3 = 1.0

Fig. 4.73 Crumbling of the lubricated surface of a roll made of rail steel in testing for contact
fatigue [75]

As an example, we also consider a system of three parallel edge cracks (Fig. 4.72).
It follows from this figure that, for three cracks with equal (Fig. 4.72a) and different
(Fig. 4.72b) lengths, the extreme cracks develop quite intensely, whereas the middle
crack grows very slowly. In this case, the values of the SIFs along the paths are much
lower than for the system of two cracks. For the first crack, these values are unstable,
especially as its tip approaches the neighboring crack.

In general, for low friction coefficients in contact between the bodies, we observe,
in many cases, a well-pronounced trend in the development of parallel edge cracks to
the formation of crumbling on the contact surface. In particular, this trend becomes
stronger for a system of unequal cracks if the first crack encountered on the path of
motion of the counterbody is shorter than the next crack. The obtained numerical
results are in good agreement with the experimental data (Fig. 4.73).

Two cracks for high values of the contact friction coefficient. For high values of
the contact friction coefficient in (f = 0.3), the cracks of the same length propagate
into the bulk of the material (Fig. 4.74) as in the case of a single crack [38, 87].
After the appearance of the second crack, the first crack changes the direction of
its propagation. Then the first crack stops (except the value δ = b/a = 0.5) and the
second crack begins to propagate as the main crack.
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Fig. 4.74 Crack growth
paths for two parallel equal
cracks as functions of the
distance between them;
f = 0.3; ε1 = ε2 = 1.0: 1
— δ = 0.5; 2 — δ = 1.0;
3 — δ = 2.0

The numerical calculations show that, for the friction coefficient f = 0.3, the
behaviors of cracks for the other angles of their initial inclination to the boundary of
the body (β = π/2 and π/6) are similar.

4.4.3 Conclusions

We study the stress intensity factors and the kinetics of propagation of one and two
parallel edge cracks in the elastic half-plane. The cracks appear on the boundary of
the half-plane depending on the motion of the model contact load (Hertz pressure
with tangential component) along the boundary. We studied the cracks inclined at
the angle β = 5π/6 to the direction of tangential contact forces and, hence, at a small
angle β̄ = 30° = π –β to the direction of motion of the contact load (Fig. 4.66).
The proposed scheme models the contact interaction of rolling bodies with slip in
the wheel-rail system, while the value of the angle β is characteristic of a system
of surface cracks in the rails. The numerical results are obtained for two values of
the friction coefficient f = 0.1 and f = 0.3 in contact between the rolling bodies,
relative crack length ε = l0/a = 1.0, and various distances between the cracks. It is
established that:

• For a low coefficient of sliding friction between the rolling bodies (f = 0.1), the
cracks begin to close (under the conditions of smooth contact between the faces)
from the tips in the course of motion of the contact load (counterbody) prior to
covering of the crack mouth by the counterbody, which is not observed for higher
values of the friction coefficient (f = 0.3). However, if the counterbody covers the
crack mouths, then they start to close from the mouth independently of the value
of the friction coefficient.

• The maximum value of the range �KII in a contact cycle (for variable λ = x0/a)
corresponding to fracture by the mode II mechanism strongly depends on the
distance between the cracks. For the distances between two parallel cracks com-
parable with the length of the contact section (d ≈ a…2a), �KII attains its highest
value. In other words, the maximum softening of the rolling surface is attained
under this condition (see Table 4.20); this result agrees with the experimental data
obtained in [102];
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• The paths of growth for systems of (2–5) parallel cracks of different lengths agree
(Figs. 4.69, 4.70, 4.71, 4.72, 4.73 and 4.74) with the available experimental data
[75] on crumbling of the contact surfaces of rolls made of rail steels.
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Chapter 5
Fretting Fatigue Fracture

Abstract This chapter deals with the investigation of contact interaction of two
bodies under the conditions of fretting fatigue. We study the fracture processes in the
material (and construct the paths of crack propagation) in the zone of cyclic contact
of two bodies under the conditions of fretting fatigue, in particular, depending on
the friction coefficient and stick/slip conditions between the bodies, the form of the
base of counterbody (the type of modeling contact loading), etc. We also present
some examples of evaluation of the residual service life for turbine blades of the
GTE (gas-turbine engine) made of TS-5 (TC-5) titanium alloy.

5.1 Foreword Theses

The phenomenon of fretting is the process of accumulation of defects on the con-
tact surfaces two bodies pressed to each other in the course of their cyclic mutual
displacements with small amplitude. This phenomenon has been extensively studied
for about 100 yr. First, it was regarded as the phenomenon of surface damage, which
could be now called fretting wear. The first information about fretting wear in the
literature appeared in 1911 in the work by Eden et al. [24]. They revealed fretting par-
ticles (powder and fragments) of iron oxide between the contacting metal surfaces.
The contact studied in the cited was realized under the conditions of sliding of one of
the pressed surfaces along the other surface (Fig. 5.1) with microscopic oscillatory
displacements. At present, the phenomenon of fretting contact (contact interaction)
is defined just in this way, although the authors did not mention this feature. Pur-
poseful investigations of fretting were originated in 1927 by Tomlinson [61] who
introduced the term “fretting corrosion” for the first time, thus emphasizing the pres-
ence of oxidation processes accompanying the accumulation of defects. Since that
time, numerous researchers and engineers revealed various types of defects (includ-
ing micro- and macrocracks) in the course of contact of bodies under the conditions
of fretting and started to give much attention to the processes of fatigue fracture,
connected with this contact. It was established that, under the conditions of fretting
fatigue, the reliability of contacts in machine units is violated, the quality of the
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Fig. 5.1 Scheme of
realization of fretting fatigue;
(1) sticking, (2) slipping

surfaces of workpieces is deteriorated, and their fatigue strength and lifetime notice-
ably decrease.

At present, it is customary to distinguish [7, 66] three types of processes and
defects developed in the course of fretting:

• the process of fretting fatigue realized under the combined action of fretting and
fatigue; it is accompaniedby the appearance anddevelopment ofmicro- andmacro-
cracks, pits, cavities as well as by the insignificant formation of powder-like wear
products;

• fretting corrosion, which is a kind of fracture and wear caused by fretting when
the process is accom-panied by the chemical reactions between the materials and
the medium, mostly of oxidizing nature;

• the process of fretting wear accompanied by the appearance of powder-like wear
products; as a result of this process, the sizes of the workpieces change, which
leads to the appearance of gaps and stress concentrators.

The process of fretting fatigue is most often realized in machine units and struc-
tures under the action of cyclic loads or in-service vibrations in the contact zones
of junctions of the bodies and casings of various vehicles (cars, aircrafts, rock-
ets, ships), in numerous industrial structures (turbines of nuclear power plants, gas-
turbine engines, oil platforms, bridges, and pipelines), and also in various spline,
bolt, and key connections. The processes of fretting fatigue in the nearsurface zone
of elements of the units are often accompanied by the formation of cracks (Fig. 5.2).
Thus, fretting in the railroad wheel axes was found by Maxwell et al. [40] in 1967.
The experimental data and engineering practice demonstrate [3, 7, 30, 40, 43, 56, 59,
66] that the cracks are mainly localized on both sides of the contact zone. They are
initiated and propagate under the action of cyclic contact and (possibly) bulk forces
(tension-compression and bending) and most often grow into the bulk of the material
(through the element of the unit). In this way, they substantially shorter the lifetime
of some units and machines.

Collins [7] noted that “the loss of the serviceability of machine elements caused
by fretting fatigue is one of the most dangerous kinds of fracture both due to the
high frequency of its appearance and heaviness of its consequences.” Waterhouse
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Fig. 5.2 Fatigue cracks initiated from the site of damage by fretting: a in the axle set of the shaft
[3], b under the rivet head [66], c on the surface of the plate of car spring [56], d on the surface of
a rope wire [66]

[66] emphasized: “It is especially important to understand the role of fretting in
the initiation of fatigue fracture and establishing one of the causes why the fatigue
resistance of structural units is lower than the fatigue resistance of separate parts.”

There are numerous publications devoted to the investigation of fretting fatigue
(fretting corrosion) of structural materials. These are, in particular, the monographs
by [2, 3, 29, 31, 33, 49, 56, 66], selected chapters of the monographs by Collins [7]
and Johnson [34], and the surveys [6, 43, 59]. In recent years, in connection with the
development of fracture mechanics, the researchers started to extensively apply its
approaches to the investigation of fretting fatigue. The surveys and generalizations
of these investigations can be found in [6, 30, 33, 37, 43, 59, 63]. Note that the
major part of these works is experimental and, at present, their methodology and, in
particular, the schemes of testing (Fig. 5.3) are thoroughly developed [31, 33, 59,
66].

It is clear that the final aim of all these investigations is the development of
numerical methods aimed at the prediction of lifetime and fracture of the elements
of joints under the conditions of fretting fatigue. The work by Rooke and Jones
[52] was one of the first publications where a computational model was proposed
for the estimation of the lifetime of structural materials according to their crack
resistance. In this method and in the major part of procedures developed later, the
crack growth paths are predicted in a simplified way, on the basis of the experimental
data. The stress intensity factors at the crack tip along the crack path are determined
approximately by using the solution of a problem of the theory of elasticity for a
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Fig. 5.3 Typical schemes of specimens loading under fretting fatigue test

half-plane with edge rectilinear crack either perpendicular [24, 52, 64] or inclined
[28, 33, 39] to the boundary of the half-plane under loadsmodeling the force schemes
of fretting fatigue. By using the SIF along the crack paths and the methods of fatigue
fracture mechanics (see, e.g. [44], vol. 4), the researchers estimate the crack growth
rate and the lifetime of the nearsurface layer of the analyzed product. In a different
approach proposed in [27], the crack path is predicted according to the stress-strain
state of the continuous half-plane (without cracks).

In the present work, the computational model used for the investigation of fracture
processes and estimation of the lifetime of elements of the fretting couples (according
to the crack growth resistance of material) is based on the concepts of the general
model described in Chap. 2. It was successively developed in [9, 14, 15, 19, 47]. In
what follows, we propose a description of this model.

Assume that one of the bodies is damaged by cracks. As the simplest version of
model domain for this body, we choose an elastic half-plane weakened by a system
of curvilinear cracks (Fig. 5.4). We replace the contact influence of the counterbody
either by the action of a punch (Fig. 5.4) or by the action of normal static forces
p(x, λ) and alternating (in a contact cycle. as functions of time t) tangential forces
q(t, x, λ) distributed in a certain way over a part of the boundary (Fig. 5.5). These
forces depend on the shape and sizes of the counterbody, the specific features of
contact interaction in a cycle, the mechanical characteristics of the materials and
contact surfaces, etc. As the most extensively used force schemes of model loads
p(x,λ), we canmentioned concentrated forces, contact pressure, or elliptic (Hertzian)
distribution of forces [23, 28, 33, 39, 42, 52, 64].Under conditions of full slip between
the contacting bodies, themodel tangential forces are expressed via the normal forces
by the Amontons–Coulomb law, whereas in the presence of the sticking region, it is
customary to use more complicated dependences between the tangential and normal
forces [33, 34, 42]. If the body is subjected to the nominal (bulk) cyclic loading
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Fig. 5.4 General scheme of
the model

Fig. 5.5 Computational
scheme of the model

(Fig. 5.3b, c), then the scheme of model contact loading is supplemented by the
loading of the half-plane at infinity σ∞

x (Figs. 5.4 and 5.5).
In view of the alternating character of displacements of the counterbody, we

approximate the model tangential forces as follows:

q(x, f,λ, t) = q±(x, f,λ) = ±q(x, f,λ). (5.1)

The parameter λ = x0/a is regarded as fixed. Thus, in order to construct the
crack growth paths (trajectories) under the conditions of fretting fatigue (unlike
the conditions of rolling), we use only the main step h of their increments (see
Fig. 5.5). The tangential forces q+(x, f, λ) and q–(x, f, λ) (identically distributed but
with opposite directions) form a contact cycle and correspond to its positive and
negative phases. Under the conditions of fretting fatigue, we may observe both the
full slipping of the bodies and their sticking with partial slipping. We assume that,
under the conditions of full slipping, the tangential forces are given by the formula

q±(x, f, λ) = ± f p(x, λ), (5.2)

where f is the friction coefficient between the bodies.
We now study the growth paths of the edge cracks the under the conditions of

realization of the opening mechanism. Hence, we can assume that the trajectory is
formed by themaximal values of the SIFK Iθ in a contact cycle (see condition (2.24)).
As shown above, they are given by the formula
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Kmax
Iθ (l) = max

{
K+

Iθ(l), K−
Iθ(l)

}
. (5.3)

Hence, we represent the condition of crack growth (2.26) takes the form

�KIθ(l, θ) = ∣∣ K+
Iθ

(
l, θ∗∗) − K−

Iθ

(
l, θ∗∗) ∣∣ ≥ �KIth, (5.4)

where

θ∗∗ =
{

θ∗+ for K+
Iθ > K−

Iθ ;
θ∗− for K−

Iθ > K+
Iθ .

(5.5)

The experimental data and engineering practice show that, under the conditions
of fretting fatigue, the cracks are mainly localized on both sides of the contact zone
(Fig. 5.1). They are formed and propagate under the action of cyclic contact and
(possibly) bulk forces and most often grow into the bulk of the material, which lead
to failures. However, the cracks located under the counterbody may be filled with
powder-like fretting products. Due to their wedging action, these cracks may change
their trajectories and, in particular, propagate toward the surface of the body and
cause its crumbling. In what follows, we study both cases of crack growth in the
fretting zone. The case where the conditions of partial sticking are realized in the
contact zone is also analyzed.

5.2 Edge Crack Mouth Outside the Contact Section. Full
Slipping Between Contacting Bodies

Stress intensity factors for the edge cracks and the paths of their growth. It is
known from the engineering practice and experimental data that the cracklike defects
observed under the conditions of fretting fatigue mainly have the surface character
and are localized near the edges of the counterbody (contact zone). Therefore, prior
to estimating the lifetime of the material of these most sensitive zones, we determine
the stress-strain state (SIF) and the crack growth paths in the elastic half-plane near
the ends of the contact section (Fig. 5.6).

We first investigate and analyze the SIF for an edge rectilinear crack of length l0
inclined at an arbitrary angle β to the boundary of the half-plane such that the crack
mouth appears on the boundary beyond the contact section (Fig. 5.6). We model the
contact load by a constant pressure (p(x) = p = const) with tangential component
(q(x) = fp) in a part of the half-plane boundary of length 2a at a distance x0 from the
crack mouth. Without loss of generality of formulation of the problem, we assume
that the contact load is located to the right of the crack mouth. Here, the positive
direction of the tangential forces coincides with the direction of theOx-axis. We also
suppose that the crack faces do not contact and are free of loads. Then the boundary
conditions of our problem can be written as follows:
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Fig. 5.6 Simplified
computational scheme of the
problem

σy(x) ± iτxy(x) = −p ± iq = −p(1 ∓ i f ); |x − x0| ≤ a, y = 0;
N±(t) + iT±(t) = 0, t ∈ L .

(5.6)

In this case, the problem of evaluation of the SIF is reduced to the solution of the
singular integral Eq. (3.151) with the right-hand side (3.168), namely,

P (η) = P0(η)

= p

π

{
w′(η)

2

[

(i − f ) ln
λ + 1 − b(η)ε

λ − 1 − b(η)ε
− (i + f ) ln

λ + 1 − b (η)ε

λ − 1 − b (η)ε

]

+

+ w′(η)

exp (2i α)

[
( f + i) ε

(
b (η) − b(η)

)

(
λ − ε b (η)

)2 − 1
+ f ln

λ + 1 − b (η)ε

λ − 1 − b (η)ε

]}

,

(5.7)

where b(η) = [z01 + w(η) exp(iα)]/l; ε = l/a; λ = x0/a; α = –β, l is a parameter
characterizing the crack length (in the general case, curvilinear), and t = w(η) is the
parametric equation of the crack contour L.

If the half-plane is additionally subjected to cyclic tension at infinity with uni-
formly distributed forces σ∞

x = σ, then one more term appears on the right-hand side
of the SIE (3.151) (see (3.154)):

P∞
0 (η) = σ

[
w′(η) exp (−2 i α) − w′(η)

]/
2. (5.8)

We solve the singular integral equation (3.151) by the method of mechanical
quadratures (see Sect. 3.5).

The preliminary numerical analysis of the dependences of the SIF for an initially
rectilinear crack on the parameters ε = l0/a, β, λ, and f shows that, in the negative
phase of a contact cycle, where q = q– = – fp (Fig. 5.6), the crack is mainly located
in the compression zone (K I < 0) and, in its positive phase, where q = q+ = + fp,
it is located in the tension zone (K I > 0). Hence, in what follows, we investigate the
SIF and trajectories for the positive phase of the contact cycle.
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Fig. 5.7 Normalized SIFs FI = KI/
(
p
√

πa
)
a, c and FII = KII/

(
p
√

πa
)
b, d for an edge

rectilinear crack inclined at an angle β to the boundary of the half-plane depending on the relative
distance λ = x0/a of the contact load from the crack mouth; f = 0.5

In Figs. 5.7 and 5.8, we present the plots of the normalized SIF F+
I,II(λ, β, ε) =

K+
I,II(λ, β, ε)

/(
p
√

πa
)
on the angle β of crack orientation and the relative distance

(λ = x0/a) of the contact load from its mouth for the values of friction coefficient f
= 0.5 and f = 0.8 and (mainly) for two values of the relative crack length ε = l0/a =
0.1 and ε = 0.5. The range of the parameter λ is chosen with regard for the direction
of tangential forces q to guarantee that the crack faces do not contact. In the course
of these calculations, the absence of contact between the crack faces was checked by
satisfying the condition K I(λ) > 0 and also by the sign of the discontinuity of normal
displacements along the crack (see formula (4.11)).

The data presented in Figs. 5.7 and 5.8 and the results of other additional calcu-
lations enable us to make the following conclusions:

• The values of the SIF K I(λ) and max K I(λ) strongly depend on the friction coeffi-
cient f, i.e., on the value of contact tangential forces. The quantity max K I strongly
increases with f. Moreover, the range of λ in which the crack is open (its faces are
not in contact) enlarges. Here, the values of K II(λ) and max |K II(λ)| weakly vary
as functions of f. However, the direction of tangential contact forces determines,
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Fig. 5.8 Normalized SIFs FI(λ, β, ε) and FII(λ, β, ε) for the edge rectilinear crack inclined to the
boundary; f = 0.8

to a large extent, the direction of tangential stresses along the crack faces near the
tip.

• In the case of short cracks (ε = 0.1), for all considered values of f, the values
max K I(λ) are attained for β = π/2 if the edge of the load is located near the crack
mouth (λ ≈ 1.0). For longer cracks (ε = 0.5, 1.0, 2.0), the values max K I(λ) shift
to the side of β = π/6 and are attained when the distance between the contact load
and the crack mouth is much larger (see, in particular, Fig. 5.8a, c).

• The character of changes in K II(λ), including its sign, strongly depends on the
crack orientation (see Fig. 5.8b, d).

• The maxima of |K II(λ)| in a broad range of the lengths of (open) cracks and the
values of the friction coefficient f = 0.3…0.5 are attained for the orientations
β = π/3. The increase in the friction coefficient in contact between the bod-
ies implies that max |K II(λ)| is attained for cracks inclined to the boundary at a
smaller angle (β = π/6; Fig. 5.8b, d). These results are in good agreement with
the experimental data on the orientation of shear cracks in the initial stage of their
propagation [28, 59, 64].

• The results of additional calculations show that the character of changes in the
mixed-type SIF K Iθ(λ) is, in general, very similar to K I(λ).
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Summarizing these results, we note that the data on the SIFs and, especially, on
the values of the parameters for which the SIFs reach their maximum values are
used as the input data for the choice of the length, orientation, and location of the
cracks required to construct the paths of their propagation. In particular, we choose
the relative distance λ* = x*0/a between the mouth of the initial crack and the contact
load such that K Iθ(λ*) = max K Iθ(λ) for given f, β, and ε.

To construct the crack growth paths and estimate the residual lifetime, we choose
two schemes of interaction (contact) of elements of the fretting couples typical of
fretting fatigue:

I. The counterbody is pressed to the main body by a normal static force P and
realizes cyclic reciprocating displacements relative to main body (Figs. 5.1, 5.3a and
5.4). We model this scheme by the action of a constant pressure of intensity p and
the shear forces q± = ±fp on boundary of the half-plane (see Fig. 5.6). It is assumed
that the direction of shear forces q+ coincides with the direction of the Ox-axis if the
crack mouth is located to the left of the end of the contact section;

II. The counterbody is pressed to themain bodyby a normal forceP; themain body
is nominally subjected to cyclic tension-compression (Figs. 5.3b and 5.4). We model
this scheme by the action of constant pressure p, cyclic forces of tension-compression
uniformly distributed at infinity σ∞

x (t) = ±σ (Fig. 5.5), and shear forces q± = ±fp
on the half-plane boundary. In what follows, by σ ± we denote the limits of forces
σ∞
x (t) (their maximum absolute values) in a contact cycle.
Note that the shear forces q± formed in the contact zone in the case of contact

scheme I differ from the shear forces q± formed in the contact scheme II. In the first
case, they appear under the simultaneous action of the pressure p and alternating
displacements s(t), while in the second case, under the action of the forces ±σ and
pressure p. Clearly, for a more precise modeling of the contact schemes I and II, the
dependences q(s(t), x) and q(σ∞

x (t), x) should be determined either experimentally
or as a result of the solution of quite complicated nonstationary contact problems.

Fig. 5.9 Dependences of the propagation trajectories of an initially rectilinear crack perpendicular
to the half-plane boundary on the friction coefficient f in contact between the bodies
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Fig. 5.10 Dependences of the propagation trajectories of an initially rectilinear crack on the angle
β of its inclination to the half-plane boundary

Fig. 5.11 Dependences of the shapes of the paths of initially rectilinear cracks perpendicular to
the half-plane boundary on the ratio r of the nominal forces σ+ to the contact pressure p; f = 0.8

On the basis of the proposed computational model and the algorithm of step-by-
step construction of the crack growth paths, we studied the paths (trajectories) of
propagation of the most dangerous edge and initially rectilinear cracks located in
the contact zone (the schematic diagrams of these problems are shown in Figs. 5.9,
5.10 and 5.11). For the construction of these trajectories, we solve the SIE (3.151)
for a curvilinear edge crack in the elastic half-plane loaded either by forces of the
form (5.6) in the contact scheme I or by the forces σ∞

x = σ and forces of the form
(5.6) in the contact scheme II. Note that, in the case of scheme I, we construct the
paths solely for the positive phase of a cycle (q = q+ = + fp); at the same time, for
scheme II, this is done for the zero-to-tension loading mode (σ – = 0). In this case,
max σ∞

x (t) = σ+ > 0. It should be emphasized that, in the case of contact of the
crack faces either under the action of tangential forces q– in the negative phase of
the contact cycle or under the action of compressive bulk forces (σ∞

x = σ− < 0), the
problem can be solved by using singular integral equations deduced in Sect. 3.10 of
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Fig. 5.12 Dependences of the propagation paths of an initially rectilinear crack on the angle β of
its orientation for the initial relative crack length ε = 0.1 (a) or ε = 0.5 (b); f = 0.5; the relative
distance of the contact load from the crack mouth λ* = 1.1 (a) and λ* = 1.2 (b)

the present work. The results of evaluation of the crack growth paths are displayed in
Figs. 5.9, 5.10 and 5.11. The relative distance from the contact section to the crack
mouth λ* = x∗

0 /a varied within the range 1.1–1.2. The values of λ* are chosen to
guarantee that K Iθ(λ*) ≈ max K Iθ(λ) for fixed f, ε, and β. The crack growth paths
in Figs. 5.9 and 5.10 correspond to the contact scheme I, while the paths depicted
in Fig. 5.11 correspond to scheme II; they are constructed in the dimensionless
coordinates x1/l0 and y1/l0 (see Fig. 5.6).

As follows from Fig. 5.9a, b, the friction coefficient f in contact between the
bodies strongly affects the shape of the crack growth path. The increase in f “drags”
the analyzed crack under the contact zone. For lower f, the crack deviates from the
contact zone.

By analyzing Fig. 5.10a and b and the trajectories of propagation of the cracks ini-
tially inclined at different angles β to the half-plane boundary for f = 0.5 (Fig. 5.12a,
b), we can conclude that the initial orientation of the crack weakly affects the char-
acter of its subsequent development. The cracks with different initial orientations
approach the asymptote typical of every value of f.

Under the contact conditions II, when the process of fretting between the elements
of fretting couple is caused by the nominal tension-compression of the analyzed body,
the crack paths (Figs. 5.11 and 5.13) originating from the edge of the contact section
are closer to rectilinear than for the contact scheme I. As the intensity of nominal
forces (the parameter r = σ+/p) increases, the crack growth paths exhibit a trend to
take orientation perpendicular to the direction of these forces.

In Fig. 5.14a, we present the images of microcracks in a thin surface layer near the
end face of the fretting bridge [42]. At the same time, in Fig. 5.14b, we see the main
crack caused by the complex action of fretting and nominal tension-compression
[26]. The comparison of the computed trajectories shown in Fig. 5.10a (curves β =
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Fig. 5.13 Dependences of the shape of paths of initially perpendicular to the half-plane boundary
crack on the ratio p/σ of the normal contact pressure p to the intensity of tensile forces σ at infinity
for the ε = 0.1 (a) and ε = 0.5 (b); f = 0.5; the relative distance between the contact load and the
crack mouth is λ* = 1.1

Fig. 5.14 Initiation (a) and propagation (b) of cracks in aluminum alloy under the conditions of
fretting fatigue [37]

π/3 and β = π/6) and Fig. 5.11a with the experimental data presented in Fig. 5.14
demonstrates that they are in good agreement.

It should be emphasized that, in the absence of the nominal load, the SIF FIθ

decrease along the trajectories (Table 5.1a). With the appearance and growth of the
nominal load (increase in r = |σ+|/p), the crack paths become perpendicular to the
direction of tension at infinity (Figs. 5.11 and 5.13) and the SIF FIθ increase along
the trajectories (Table 5.1b).

Note that the numerical data were mainly obtained for the order of the system of
algebraic equations M = 40 and the step of construction of the trajectory h/l = 0.2.

Estimation of the residual lifetime. We now find the residual lifetime of the
contact surface of VT3-1 (BT3-1) titanium alloy damaged by an edge initially recti-
linear crack for its locations relative to the counterbody (contact loading) typical of
fretting fatigue. We consider scheme II of contact interaction and the stage of crack
propagation by the opening mechanism. We perform our calculations on the basis
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Table 5.1 Changes in the SIF FIθ = KIθ
/(

p
√

πa
)
along the crack paths with relative initial length

ε = 0.1

a f = 0.5 f = 0.9

β = π/6 β = 5π/6 β = π/2 β = π/2

x1/l0 FIθ x1/l0 FIθ x1/l0 FIθ x1/l0 FIθ

1.0 0.1583 1.00 0.1341 1.00 0.2146 1.00 0.4686

1.1 0.19 1.24 0.208 1.24 0.2131 1.24 0.488

1.2 0.20 1.50 0.21 1.50 0.2082 1.50 0.502

1.3 0.19 1.74 0.19 1.74 0.2024 1.74 0.50

1.4 0.19 2.00 0.18 2.00 0.195 2.00 0.51

1.5 0.19 2.24 0.16 2.24 0.189 2.24 0.51

1.6 0.19 2.50 0.15 2.50 0.183 2.50 0.51

1.7 0.18 2.74 0.14 2.74 0.178 2.74 0.50

1.8 0.17 3.00 0.14 3.00 0.172 3.00 0.50

1.9 0.16 3.24 0.13 3.24 0.167 3.24 0.49

2.0 0.15 3.50 0.13 3.50 0.162 3.50 0.49

2.1 0.13 3.74 0.12 3.74 0.158 3.74 0.48

4.00 0.13 4.00 0.153 4.00 0.47

b f = 0.5, β = π/2

x1/l0 FIθ

r = σ+/r = 10 r = 1.0 r = 0.1

1.0 3.75 0.5681 0.2498

1.5 4.55 0.6427 0.2517

2.0 5.21 0.698 0.2462

2.5 5.79 0.744 0.2395

3.0 6.31 0.784 0.233

3.5 6.79 0.821 0.227

4.0 7.23 0.854 0.221

4.5 7.65 0.885 0.217

5.0 8.04 0.915 0.212

5.5 8.42 0.943 0.208

6.0 8.78 0.971 0.205

7.0 9.45 1.022 0.200

8.0 10.08 1.072 0.197
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Fig. 5.15 Maximal values of the normalized SIF FIθ(x1/l0) along the trajectories of the edge crack
propagation; β = π/3; λ* = 1.1; r = σ+/p

of the second relation in (2.17) with the use of the values �Kσ = �K Iθ = max K Iθ

along the crack growth paths (Fig. 5.15). The crack growth rate is given by the Paris
relation [67]:

v = C(�KIθ)
n. (5.9)

The characteristics of cyclic crack resistance of VT3-1 alloy are as follows
[4]: C = 2.14 × 10−13 (MPa)–n× m1–n/2, n = 4.17, K I, 1–2 = 11.6 MPa

√
m and

K I, 2–3 = 62.0 MPa
√
m. Here, K I, 1–2 and K I, 2–3 are the boundaries of Paris section

in the FFD [44]. We use the quantityK I, 2–3 to find the critical values (relation (2.27))
of the crack length lcσ = lc (x1c/l0) and the lifetime Ngσ.

Assume that the initial crack length l0σ = l0 = 1 mm and the contact pressure p
= 120 MPa. As already indicated, for the onset of propagation of an edge crack, it is
necessary that condition (5.4) be satisfied.We guarantee the validity of this condition
satisfaction by applying the corresponding load, i.e., specify the maximal nominal
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force in a cycle σ+ = σ+∗ (parameter r = σ+/p) such that the initial crack satisfies the
following condition for fixed ε, β, λ*, r, and f :

p
√

πa · maxF0
Iθ

(
ε, β, f,λ∗, r

) = KI, 1−2. (5.10)

Here, F0
Iθ = K 0

Iθ /(p
√

πa) is the normalized value of the SIF K Iθ for the
initial rectilinear crack ε = l0/a. Note that all values of max FIθ along the tra-
jectories (Fig. 5.15a–f) are higher than the corresponding initial values of max
F0
Iθ(ε, β, f,λ∗, r). Hence, after their start, the analyzed cracks do not stop.
Since the values of max FIθ(x1/l0) along the crack growth paths are basic for the

estimation of the lifetime, we now discuss some specific features of these depen-
dences in more detail. As follows from the analysis of the data presented in Fig. 5.15
(see the schemes in Figs. 5.11 and 5.13), we can write:

• The higher the friction coefficient f in contact between the elements of a friction
couple for fixed values of ε and r, the greater the values ofmaxFIθ(x1/l0), especially
for initially small cracks (Fig. 5.15a–c).

• As the cracks grow, the influence of friction noticeably decreases because their tips
move away from the contact zone: for ε = 0.5 and x1/l0 →20, the curves obtained
for different f practically coincide (Fig. 5.15e, f).

• As the amplitude of the nominal load (parameter r) in a contact cycle increases,
the value of max FIθ (x1/l0) becomes much higher, and the influence of friction
becomes weaker.

Note that data presented in Fig. 5.15 can be used to compute the lifetime of any
isotropic elastic material (within the framework of the proposed approach).

In Table 5.2, we present the results of evaluation of the lifetime of the nearsurface
layer in the contact zone of VT3-1 titanium alloy according to its crack resistance.
In this case, the lifetime Ngσ is estimated by the number of loading cycles for which
the length l0 = 1 mm of the initial edge crack increases to its critical value lcσ upon
attainment of which the crack begins to grow spontaneously. We also present the
approximate values of these critical lengths lcσ/l0 ≈ x1c/l0. Moreover, in Table 5.2a,
b, we present the intermediate values of the number of loading cycles Npσ for which
the initial crack grows by about 20 its lengths (lp/l0 ≈ x1p/l0 = 20).

The quantities Ngσ and Npσ in Table 5.2a were established under the condition
that every initial crack for fixed values of the parameters f, ε, β, λ* and r starts
and propagates under the nominal load, determined from equality (5.10). Hence,
every initial crack has its own “individual” load σ+ = σ+∗ . The data presented in
Table 5.2a illustrate the dependence of lifetime on the contact friction coefficient
and on the ratio of the intensity of nominal cyclic forces σ+ to the contact pressure
p. As already indicated, the angles of initial inclination of the crack to the half-
plane boundary chosen for calculations (β = π/2 and β = π/3) correspond to the
typical orientations of macrocrack nuclei under the conditions of fretting fatigue. It
follows fromTable 5.2a that, as the nominal load (parameter r) increases, the lifetime
decreases. The intermediate Npσ and critical Ngσ lifetimes for the initial orientations
of the crack at the angle β = π/3 are, as a rule, lower than for the angle β = π/2,



www.manaraa.com

5.2 Edge Crack Mouth Outside the Contact Section … 271

Table 5.2 Residual lifetime of the nearsurface layer of VT3-1 (BT3-1) titanium alloy in the contact
zone: (a) for different values of the nominal forces σ+ determined from condition (5.10); (b) for
identical values of the nominal forces σ+

a ε = 0.1; λ* = 1.1 ε = 0.5; λ* = 1.1

f β = π/2 β = π/3 β = π/2 β = π/3

Npσ
×
10−6

x1c
/l0

Ngσ
×
10−6

Npσ
×
10−6

x1c
/l0

Ngσ
×
10−6

Npσ
×
10−6

x1c
/l0

Ngσ
×
10−6

Npσ
×
10−6

x1c
/l0

Ngσ
×
10−6

r = σ+/ p = 0.3

0.3 0.88 81 0.99 0.65 63 0.69 0.35 40 0.37 0.22 21 0.22

0.5 1.4 88 1.9 1.3 81 1.7 0.67 81 0.71 0.63 62 0.66

0.65 1.6 88 2.7 1.8 85 – 0.96 85 1.1 0.94 80 1.0

0.8 1.8 91 3.5 2.0 85 – 1.1 86 1.3 1.2 81 1.4

r = 1.0

0.3 0.29 49 0.30 0.25 33 0.25 0.21 32 0.21 0.19 23 0.19

0.5 0.35 75 0.39 0.33 55 0.35 0.26 42 0.26 0.24 32 0.24

0.65 0.40 83 0.46 0.38 75 0.43 0.30 51 0.31 0.28 40 0.29

0.8 0.44 86 0.54 0.44 79 0.51 0.34 61 0.36 0.33 49 0.34

r = 3.0

0.3 0.20 35 0.20 0.17 25 0.18 0.18 30 0.18 0.16 22 0.16

0.5 0.21 42 0.22 0.19 31 0.20 0.19 33 0.19 0.17 25 0.17

0.65 0.22 47 0.23 0.21 36 0.21 0.20 35 0.20 0.18 27 0.18

0.8 0.24 53 0.25 0.22 42 0.23 0.21 38 0.21 0.19 30 0.20

b ε = 0.1; β = π/2; r = 2.0

f x1r/l0 Npσ×10–4

0.3 20 24.6

0.5 – || – 14.9

0.7 – || – 9.54

which is confirmed by the experimental data on the hazard of cracks inclined to the
boundary of the body at the angle β = π/3. A certain increase in the lifetime with the
friction coefficient f can be explained by the fact that, in this case, the cracks start
not for the same levels of loading σ+ but for different (“individual”) levels of σ+.

Comparing the data presented in Table 5.2a for smaller (ε = 0.1) and larger
(ε = 0.5) initial crack lengths, we conclude that the lifetime is longer for smaller
initial cracks. However, this effect becomes weaker as the nominal load increases:
If, for |σ+|/p = 0.3 and ε = 0.1, the lifetime Ngσ exceeds its value for ε = 0.5, on
the average, by a factor of 2.8 for the same values of f and β, then, for |σ+|/p = 3.0,
the lifetime Ngσ obtained for ε = 0.1 exceeds the value of Ngσ for ε = 0.5, on the
average, only by 15%.
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The influence of the coefficient f on the lifetime is well visible from the data in
Table 5.2b. In this table, we present the intermediate lifetime Npσ under the load σ+

(r = 2.0) identical for all three analyzed cases (f = 0.3, 0.5, and 0.7). This load
is starting, i.e., it guarantees the validity of condition (5.10) for the case f = 0.7
and definitely exceeds the starting values of σ+ for f = 0.5 and f = 0.3. Thus, we
can conclude that the increment of the half amplitude of the friction coefficient in a
contact cycle by 0.2 leads to a significant decrease in the lifetime (by about a factor
of 1.6).

5.3 Crack Mouth Under Counterbody. Full Slipping
Between Fretting Pair Elements

The experimental data and engineering practice show [3, 30, 66] that, under the
conditions of fretting fatigue, the cracks and other defects are mainly localized on
both ends of the contact zone. They are formed and propagate under the action of
cyclic contact andbulk (tension-compression andbending) forces.Among the surface
damages encountered in the contact zone of elements of the fretting couples, one can
often encounter crumbling of various sizes and configurations. As typical elements of
crumbling, one can mention fairly large dish-shaped, wedge-like, and small needle-
shaped pits. The experimental investigations of the processes of fracture and wear
carried out by R.B. Waterhouse, J.S. Halliday, A.R. Wayson, and other researchers
enable us to assume that the fretting products closed in the contact zonemay serve as a
possible cause of crumbling.Under the conditions of fretting, the cracks formed in the
contact zone under the counterbody can be filled with powder-like fretting products
and oil. Due to the wedging action of these products, after a certain penetration into
the depth of the material, the cracks may propagate to the surface of the body and
lead to its crumbling. Actually, the present section is devoted to the simulation and
investigation of the process of pitting formation in the contact zone of the bodies
under the conditions of fretting fatigue.

We consider a problem of fretting fatigue of contacting bodies in the case of
contact with slip but without sticking. We construct the trajectories of edge cracks
whose mouth is located in the contact zone under the counterbody. Moreover, we
determine the dependences of the shapes of these paths on the friction coefficient
between the bodies, pressure of the filler upon the crack faces, and the location
and length of the initial macrocrack. The theoretical results are compared with the
experimental data [15, 66]. As a result, we make an attempt to estimate the residual
lifetime (according to the formation of pitting) in the nearsurface layer of elements
of the fretting couple made of TS-5 titanium turbine alloy.

Stress intensity factors. Assume that pitting is formed as a result of propagation
of the surface shear macrocrack preliminarily initiated under the counterbody for
the conditions of its cyclic filling and wedging by the fretting products. Within the
framework of the outlined approach to modeling the process of pitting formation
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Fig. 5.16 Computational
scheme of the problem for
the case of uniformly
distributed pressure on the
half-plane boundary

described above, we use the computational scheme outlined in Fig. 5.16 and the
corresponding boundary conditions (5.6):

σy ± iτxy = −p(1 ∓ i f ), |x − x0| ≤ a; σy − iτxy = 0,
|x − x0| > a for y = 0;

N±(t) + iT±(t) = −p1 = −sp, t ∈ L ,

(5.11)

where N± and T± are the limit normal and tangential stresses on approaching the
crack contour L from the left (“+”) and from the right (“–”), respectively, in Muskhe-
lishvili’s notation; 0 < s ≤ 1.0.

By analogy with [22], we establish the right-hand side of SIE (3.151):

P(η) = p

π

{
w′(η)Re

[
(i ∓ f ) ln

d(η) + 1

d(η) − 1

]
+

+ w′(η)

e2iα

[
2 ε(1 ∓ i f )Imb(η)

d2(η) − 1
± f ln

d(η) + 1

d(η) − 1

]}

− spw′(η) ;
(5.12)

where d(η) = λ – εb(η);b(η) = (z01 + w(η) eiα)/l0; ε = l0/a; λ = x0/a; l0 is the
length of the initial macrocrack regarded, for the sake of simplicity, as rectilinear and
t = w(ξ) is the parametric equation of the crack contour L.

We perform numerical investigations for broad ranges of values of the operating
parameters and the parameters specifying the location of an edge initially rectilinear
crack. (We assume that this crack is preliminarily initiated by the transverse shear
mechanism in the contact zone). The friction coefficient varies within the range
f = 0.3…0.9. The parameter characterizing the pressure of the filler on the crack
faces was s = p1/p = 0.5…1.0. The quantities specifying the length and location of
the initial crack (Fig. 5.16) take the following values: the relative initial crack length
ε = l0/a = 0.1…1.0, while the angle of crack inclination to the edge of the body
β = π/9…8π/9. The parameter of location of the crack mouth in the contact section
varies within the range |λ| = |x0/a|≤ 1.0. The origin of the local coordinate system
O1 coincides with the origin of the main coordinate system O at the crack mouth
(z01 = 0) and the O1x1-axis is oriented along the initial crack (β = –α) (Fig. 5.16).
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Fig. 5.17 Dependences of the normalized SIFs F+
I = K+

I

/(
p
√

πa
)
and F+

II = K+
II

/(
p
√

πa
)
in

the positive phase of the contact cycle for the edge initially rectilinear crack on the location of its
mouth in the contact section; f = 0.5; s = p1/p = 1.0

First, for the described ranges of the parameters of the problem (ƒ, s, ε,β, andλ),we
compute the SIFs (K I, K II, and K Iθ) and the angle θ* of propagation (deviation) of an
initially rectilinear crack with an aim to choose the basic sets of these parameters for
the construction of the crack growth paths. In particular, it is important to determine
the sets of parameters ƒ, s, ε, β, and λ favorable for the propagation of cracks to
the surface of the body (half-plane) and its crumbling. The characteristic regularities
of behavior of the normalized stress intensity factors FI,II = KI,II

/(
p
√

πa
)
and

FIθ = KIθ
/(

p
√

πa
)
and the angles θ* are shown in Fig. 5.17 and Table 5.3. The

normalized SIF F−
I,II in the negative phase of the contact cycle (q = q– = –fp) can

be easily found by using the SIF F+
I,II in the positive phase of a cycle (q = q+ =

+ fp) on the basis of the dependence F−
I,II( f, λ, β) = F+

I,II( f, −λ, π − β), which
follows from the symmetry of geometric-force scheme of the problem (Fig. 5.16).
The analysis of the obtained results enables us to conclude that:

• as the relative initial crack length ε = l0/a (Fig. 5.17) and the relative pressure
s = p1/p of the filler upon the crack faces increase (Table 5.3), the values of K I,
|K II|, and K Iθ become higher;

• for a given crack orientation (fixed β), the SIFs sharply increase and reach their
maximal values as the crack mouth becomes closer to the end of contact section
near which the crack is directed toward the load-free surface of the body; the more
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Table 5.3 Normalized SIFs and the angle θ* of initial deviation of the rectilinear crack located near
the edge of the contact section for positive (q = q+) and negative (q = q−) phases of the contact
cycle; λ = –0.9; β = π/6

f F+
I F+

II F+
Iθ

θ∗+,
deg.

F−
I F−

II F−
Iθ

θ∗−,
deg.

ε = l0/a = 0.2

s = 0.5

0.3 −0.007 0.050 – – 0.010 0.217 0.256 −70

0.5 −0.012 −0.006 – – 0.015 0.272 0.323 −69

0.7 −0.018 −0.062 – – 0.021 0.328 0.390 – 69

0.9 −0.023 −0.117 – – 0.026 0.384 0.458 −69

s = 0.7

0.3 0.200 −0.044 0.213 23 0.217 0.123 0.292 −43

0.5 0.195 −0.099 0.252 41 0.222 0.179 0.352 −50

0.7 0.189 −0.155 0.302 50 0.228 0.235 0.415 −54

0.9 0.183 −0.211 0.358 55 0.233 0.290 0.479 −56

s = 1.0

0.3 0.510 −0.184 0.594 33 0.527 −0.017 0.528 4

0.5 0.505 −0.240 0.636 39 0.533 0.039 0.537 −8

0.7 0.499 −0.295 0.683 44 0.538 0.094 0.562 −19

0.9 0.494 −0.351 0.734 47 0.544 0.150 0.599 −27

ε = 0.5

s = 0.5

0.3 0.425 −0.193 0.528 38 0.488 −0.034 0.492 8

0.5 0.404 −0.247 0.560 44 0.509 0.019 0.511 −4

0.7 0.382 −0.300 0.597 49 0.531 0.072 0.545 −15

0.9 0.361 −0.353 0.637 53 0.552 0.125 0.591 −23

s = 0.7

0.3 0.752 −0.341 0.934 38 0.815 −0.182 0.872 23

0.5 0.731 −0.394 0.964 42 0.837 −0.129 0.865 17

0.7 0.710 −0.448 0.998 45 0.858 −0.075 0.868 10

0.9 0.688 −0.501 1.035 48 0.879 −0.022 0.880 3

s = 1.0

0.3 1.243 −0.563 1.542 38 1.306 −0.403 1.470 30

0.5 1.222 −0.616 1.572 40 1.328 −0.350 1.452 26

0.7 1.200 −0.669 1.604 42 1.349 −0.297 1.440 23

0.9 1.179 −0.722 1.638 44 1.370 −0.244 1.432 19

Comment: The dashes correspond to Fy < 0
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acute the angle of crack inclination to the boundary, the higher the maximum
values of the SIFs (Fig. 5.17);

• the friction coefficient f weakly affects the SIF K I; however, its value and the
direction of tangential contact forces strongly affect the SIF K II and, hence, the
angle of initial deviation θ* and the quantity K Iθ; if the contact tangential forces
are directed to the crack mouth and along the direction of its orientation, then, in
the process of their growth, the angle θ* increases, and the susceptibility to crack
propagation toward the boundary of the body becomes stronger; on the other
hand, if these forces are directed from the mouth and act in the direction opposite
to the direction of crack orientation, then the angle θ* decreases with their growth
(Table 5.3); this promotes the process of deepening of the crack into the bulk of
the material.

Note that all calculations were performed for the order of the system of complex
algebraic equations M = 60 and the step �λ = 0.01. As compared with the results
obtained forM = 90, the maximal relative error of the values of SIFs does not exceed
1.4% even for small angles of crack inclination to the half-plane edge (β = π/9 and
β = 8π/9) and the values of the parameter λ close to ±1.0, when the convergence of
the numerical results becomes much worse.

Crack growth paths (trajectories). Formation of pitting and evaluation of
the residual lifetime. In order to study the formation of pitting based the outlined
analysis of the values of SIF and angles θ* for the initial edge rectilinear macroc-
rack, we place its mouth near the right end of the contact section and assume, as a
rule, that λ = x0/a = −0.9. The basic values of the other parameters are β = π/6;
ε = 0.2; s = 1.0; and ƒ = 0.5. We constructed the trajectories both for the positive
(q = q+ = + fp) and negative (q= q– = –fp) directions of tangential forces in contact
between the bodies, i.e., for the positive and negative phases of the contact cycle of
elements of the fretting couple. We also take into account the fact that the role of
leading crack can be played not only by a crack formed by the positive phase but
also by a crack formed in the negative phase (see Table 5.3).

Hence, if we place the mouth of an initial crack near the right end of the contact
section (Fig. 5.16), then we can study the influence of crack orientation on the shape
of its trajectory (Fig. 5.18). It was discovered that if the crack is oriented toward the
load-free surface of the body (β < π/2), then it propagates to the surface and may
cause crumbling. The positive phase of the cycle (q = q+) is especially favorable for
this. The smaller the angle of crack inclination to the half-plane edge and the larger
its length, the faster the process crack growth toward the edge. On the contrary, as the
angle of inclination β increases, the paths formed in the positive phase of the cycle
become more gently sloping, while the paths formed in the negative phase propagate
into the bulk of the material. If the crack is initially directed into the contact zone
(β > π/2), then it does not start in the positive phase of cycle (K I < 0) and grows into
the bulk of the material in the negative phase.

In view of these considerations, in what follows, we study the trajectories of a
crack initially oriented favorably for the formation of pitting; in particular, we take
β = π/6. If the initial relative length of this crack is small, then its behaviors in the
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Fig. 5.18 Dependences of
the crack growth paths on the
initial angle β of its
inclination to the body
boundary; λ = –0.9; f = 0.5;
s = 1.0

Fig. 5.19 Dependence of
the crack growth paths on its
initial relative length ε;
λ = –0.9; f = 0.5;
β = π/6; s = 1.0

positive and negative phases of a cycle are noticeably different (Fig. 5.19). In the
positive phase, the trajectories rapidly approach the edge of the body. In the negative
phase, their inclination angles are much lower. Finally, if the initial crack is longer
(ε = l0/a ≥ 0.5), then the trajectories of positive and negative phases approach each
other: The crack propagates as in the case of its growth solely under the action of
pressure on its faces in the absence of contact load [8].

If the friction coefficient f increases, then the crack propagation toward the sur-
face and its crumbling in the positive phase of a cycle becomes somewhat more
pronounced (q = q+; Fig. 5.20a). On the contrary, in the negative phase (q = q–;
Fig. 5.20b), this type of behavior becomes much weaker or even changes its sign and
the crack starts to propagate into the material.

It is clear that the trajectories of crack growth are very sensitive to the pressure of
filler on the faces. As the pressure (the value of s = p1/p) decreases, the trajectories
either become less steep (Fig. 5.20c), especially in the negative phase of a cycle
(Fig. 5.20d), or the crack does not grow at all.

The analysis of the shapes of crack paths (Figs. 5.18, 5.19 and 5.20) and the
functions FI,II(λ) (Fig. 5.17) shows that the cracks initiated under the counterbody in
the contact zone may reach the surface of the body outside this zone. Hence, the pits
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Fig. 5.20 Dependences of the crack growth paths on the half amplitude of the friction coefficient
ƒ (a, b) and the intensity of normal pressure on the crack faces s = p1/p (c, d) in the negative and
positive phases of the contact cycle; λ = –0.9; ε = 0.2

are formed mainly on the boundary of the contact zone. It is of interest to answer a
question whether a pit can be formed in the contact zone under the counterbody. For
this purpose, we performed numerical analyses for initial cracks whose mouths are
located closer to the center of the contact zone (Fig. 5.21). It is easy to see that, for
the chosen parameters, the cracks grow to the surface up to its crumbling. They can
attain the surface both under the counterbody and beyond it, forming dish-shaped
pits (cavities). It should be emphasized that, as the distance from the mouth of an
initial crack to the edge of the contact zone increases, the values of the SIF along
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Fig. 5.21 Dependence of the crack growth paths on the location of crack mouth in the contact
section; f = 0.5; s = 1.0; ε = 0.2; β = π/6; λ′ = –λ

the crack path become lower and grow slower. The analysis of the SIF for the initial
crack (Fig. 5.17 and Table 5.3) enables us to make the following prediction: If the
pressure upon crack faces and the friction coefficient decrease and the slope of the
initial crack to the surface increases, then it seems likely that a crack formed far from
the boundary of the contact zone do not start (K I < 0). As the relative initial crack
length decreases, the probability of its start also becomes lower.

In general, in the course of crack propagation in the positive phase of the contact
cycle, the values of the SIF F+

Iθ (l) along the crack paths become higher (see Table 5.4)
and then sharply increase as the crack tip approaches the boundary of the body,
which may serve as an indication of the transfer to spontaneous fracture and surface
crumbling. The values of SIF F−

Iθ (l) also grow along the paths but much slower,
especially if the pressure on the crack faces is low (Table 5.4a and b). Thus, if the
crack mouth is located near the right end of the contact section, then the positive
phase of the contact cycle is determining in the formation of pitting.

Note that a satisfactory accuracy of our calculations is guaranteed if we use the
step of construction the paths h = 0.02l0 and the order of the system of complex
algebraic equations M = 70.

To illustrate the relationship between the trends of crack propagation and lifetime,
we performed the numerical analysis of the residual lifetime of the nearsurface layer
of TS-5 titanium turbine alloy. To do this, we use here the second relation in (2.17),
where the fatigue crack growth rate is described by the Paris formula [44]:

v = C(�KIθ)
n = 10−7

(
�KIθ

/
�K ∗

I

)n; �KI, 1-2 ≤ �KIθ ≤ �KI, 2-3;

here,�K I,1–2 and�K I,2–3 are the ranges of the stress intensity factorK I corresponding
to the lower and upper boundaries of the rectilinear Paris section in the FFD of the
material; C, n, and K*

I are the parameters of the Paris equation characterizing the
cyclic crack growth resistance of the material. The values of these characteristics are
can be found in Table 5.5.

The numerical results are presented in the lower row of Table 5.4. In our calcu-
lations, we take λ = –0.9; ε = 0.2; β = π/6; the half length of the contact section
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Table 5.4 Normalized SIF F±
Iθ (l) along the crack growth paths in the positive (q= q+) and negative

(q = q−) phases of the contact cycle; λ = –0.9, ε = 0.2, and β = π/6

k (a) s = 0.6; f = 0.5 (b) s = 0.8; f = 0.5 (c) s = 1.0; f = 0.5 (d) s = 1.0; f = 0.7

F+
Iθ (l) F−

Iθ (l) F+
Iθ (l) F−

Iθ (l) F+
Iθ (l) F−

Iθ (l) F+
Iθ (l) F−

Iθ (l)

1 0.12 0.33 0.38 0.39 0.64 0.54 0.68 0.56

2 0.12 0.33 0.39 0.40 0.67 0.55 0.72 0.58

3 0.12 0.32 0.40 0.40 0.69 0.56 0.74 0.59

4 0.13 0.32 0.42 0.42 0.73 0.57 0.78 0.60

5 0.14 0.33 0.44 0.42 0.76 0.59 0.81 0.61

15 0.26 0.37 0.69 0.48 1.23 0.72 1.31 0.71

30 0.49 0.41 1.68 0.57 4.01 1.03 5.98 0.83

34 0.59 0.43 2.59 0.58 13.36 1.15 12.60a 0.86

35 0.60 0.43 2.99 0.59 14.16a 1.19 – 0.87

41 0.82 0.44 11.58a 0.62 – 1.46 – 0.92

45 1.01 0.46 – 0.63 – 1.71 – 0.96

58 4.11a 0.48 – 0.70 – 3.35 – 1.11

60 – 0.49 – 0.70 – 3.75 – 1.13

73 – 0.51 – 0.77 – 13.40a – 1.34

75 – 0.54 – 0.77 – – – 1.38

90 – 0.55 – 0.86 – – – 1.78

105 – 0.57 – 0.95 – – – 2.49

120 – 0.60 – 1.05 – – – 3.89

θ*(l0) 43° – 61° 40° – 36° 39° – 8° 44° – 19°

Ngσ crack does not start 1.71×105 0.81×105 0.46×105

Comment: k is the number of step in the construction of the path
aThe values of F±

Iθ (l) corresponding to the onset of spontaneous fracture

Table 5.5 Characteristics of cyclic crack growth resistance by normal opening for TS-5 (TC-5)
turbine alloy [35]

�KI th �K I,1–2 �K ∗
I �K I,2–3 �KI, f c C n

MPa
√
m (MPa)–nm(1–n/2)

2.5 3.1 10.3 32.0 39.0 3.7×10−11 3.4
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a = 16 mm (l0 = 3.2 mm), and the contact pressure p = 130 MPa. In the first case
(Table 5.4a), we have F−

Iθ (l) > F+
Iθ (l) and, according to conditions (5.3) and (5.4),

the crack propagates into the bulk of the material (Fig. 5.20d) along the path formed
by the negative phase of the contact cycle. Thus, the crack grows for 15 steps (this
corresponds to the increment of its length of about 1 mm) and then stops because
�K Iθ becomes lower than�K I,1–2. In the second case (Table 5.4b), the crack does not
start because, in the initial stage, we have F+

Iθ (l0) ≈ F−
Iθ (l0) and, hence,�K Iθ(l)≈ 0.

In the third and fourth cases (Table 5.4c and d), the crack starts and propagates
along the trajectory formed by the positive phase of a cycle (Fig. 5.20a) up to the
time where �K+

Iθ (l) = �KI,2-3, i.e., up to the onset of spontaneous fracture prior to
the surface crumbling. In this case, the increment of crack length is approximately
equal to 1.3 mm. Hence, in this case, the quantitative influence of pressure upon the
crack faces (Table 5.4a–c) and contact friction between the bodies (Table 5.4c and
d) on their residual lifetime is well pronounced. We also see that the validity of the
conditions of fatigue crack growth (5.3) and (5.4) and the characteristics of cyclic
crack growth resistance of materials specified by the proposed model significantly
improves the possibilities of prediction of the specific features of the fracture process
(or its absence) in the bodies subjected to fretting fatigue. In this case, we quantita-
tively taken into account various important operating characteristics of the fretting
couple, such as the size of the contact section and contact pressure.

Finally, it should be emphasized that the numerical values of Ngσ may become
much higher if, for the description of the fatigue crack growth rate, instead of the
Paris formula, we use amore exact relationwith taking into account the nearthreshold
section of the v –�K I diagram [17]. It is clear that the complete lifetime correspond-
ing to the formation of pitting and estimated with regard for the stages of initiation
and growth of an initial edge crack (by the shear mechanism)may exceed the residual
lifetime Ngσ by 1–2 orders of magnitude.

Experimental investigations. For the comparison and illustration of the process
of pitting formation caused by fretting fatigue, we analyze the experimental data [15,
50] obtained for specimens of TS-5 (TC-5) titanium turbine alloy and the data taken
from the well-known monograph by Waterhouse [66].

The chemical composition of TS-5 alloy is as follows: Ti, 5.0% Al, 3.0% Sn,
2.0% Zr, 2.0% V. Its conditional yield limit σy = 722 MPa, ultimate strength σu =
766 MPa, and relative elongation δ = 17.9%.

On the surface of prismatic specimens of TS-5 titanium turbine alloy 110×11×
5 mm in size symmetrically clamped between two prismatic counterbodies made of
the same material, as a result of its cyclic bending near the edge of the contact zone
under the counterbody, we observe the formation of relatively large pits (cavities)
(Fig. 5.22a, b) and a series of smaller pits (Fig. 5.22c). The level of slipping in the
contact zone estimated by the method of cantilever bending constituted 5…11 μm
[60]. The tensile stresses acting along the fretting line are as follows: σmax = 200MPa
(Fig. 5.22a), σmax = 130 MPa (Fig. 5.22b), and σmax = 100 MPa (Fig. 5.22c). For
the maximal sizes of the largest pit (Fig. 5.22a), we get a length of 3.5 mm and a
depth of 35μm. Along the boundary of the contact zone, smaller pits (Fig. 5.22c)
form grooves with a width of 1.0…1.5 mm and a depth of up to 40 μm. These
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Fig. 5.22 Pitting on the surfaces of the specimens of TS-5 (TC-5) titanium turbine alloy: a after N
= 1.2×105 loading cycles; σmax = 200 MPa; b after N = 4.6×105 cycles, σmax = 130 MPa; c after
N = 6×106 cycles, σmax = 100 MPa

Fig. 5.23 Surface damage in
soft steel [66]; N = 1.2×105

grooves were observed in numerous specimens subjected to fretting fatigue. In the
photographs, we can also clearly see the process of filling of the pits with fretting
products. The X-ray structural analysis shows that these products mainly consist
of titanium oxides and the traces of titanium particles, which strongly promote the
process of wedging of the cracks.

Comparing the cross section of the defect depicted in Fig. 5.23 with the shape of
the computed trajectories of growth of the edge cracks (see, e.g., Fig. 5.20), we can
assume that these defects are formed as a result of branching of the initial edge crack
filled with fretting products, which leads to the formation of two branches (either
consecutively or simulta-neously) one of which is controlled by the negative phase
of the fretting cycle and propagates into the bulk of the material, while the other
branch is controlled by the positive phase of the cycle and grows in the direction of
the body boundary.

By using the proposed model, we can explain the formation of pits of wedge-like
shape (Fig. 5.24), as indicated by Field and Waters [66]. In our opinion, defects of
this type are initiated when the edge crack growing from beneath the counterbody
toward the load-free surface of the body wedged out by fretting products crosses
another crack propagating from the load-free surface into the bulk of the material.
It is known [10, 47, 66] that, in the initial stage, the cracks from the free surface
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Fig. 5.24 Formation of a
free particle on the steel
surface [66]

propagate toward the contact zone. As a result, the crumbling pits take a wedge-like
shape.

Despite the fact that the loading modes used in the numerical analysis and exper-
imental investigations of the specimens of titanium alloy are somewhat different,
the obtained results are in good qualitative agreement and do not have quantitative
contradictions in estimating the lifetime. They also agree with the observations and
conclusions made by Waterhouse in [66] concerning the formation of typical dish-
shaped pits of crumbling in the bodies contacting under the conditions of fretting
fatigue.

5.4 Partial Slipping Between Contacting Bodies

In the literature, there are numerous works (see Chap. 1 and also the surveys [33,
47]) devoted to the investigation of the stress intensity factors near the tips of edge
or subsurface rectilinear or broken cracks in the elastic half-plane (half-space) under
the action of a contact load on the boudary of the half-plane simulating the action of
the counterbody under the conditions of full slip between the bodies. In [9, 12, 18,
22, 47], the authors also constructed the trajectories of propagation of edge cracks
under the conditions of full slip between the contacting bodies. However, there are
numerous practical cases in which sticking is realized between the bodies in a part
of the contact section. In [33, 42], one can find examples of evaluation of the SIF for
edge rectilinear cracks in the half-plane under the action of contact load modeling
the conditions of sticking and slipping.

In the present section, we model and study the process of crack propagation in
the presence of fretting fatigue under the conditions of sticking and slipping (partial
slipping) in contact between the bodies. We determine the stress intensity factors
and construct the trajectories of the propagation of edge initially rectilinear cracks
depending on the following operating parameters: friction in contact between the
bodies, ratio of the lengths of the sections of sticking and slipping, the location of
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Fig. 5.25 Computational
scheme of the problem under
action of complicated elliptic
load on the half-plane
boundary

the initial crack relative to the contact load, etc. These investigations were carried
out within the framework of the proposed model for the evaluation of lifetime and
analysis of the fracture processes in solid bodies in the course of their cyclic contact
(Chap. 2) and, in particular, under the conditions of fretting fatigue [9, 18, 47].

Model loading and stress intensity factors. We assume that one of contacting
bodies is damaged by an edge macrocrack whose mouth is located beyond the con-
tact section. We model this body by an elastic half-plane weakened by a curvilinear
(rectilinear) crack along a contour L (Fig. 5.25). The contact influence of the other
body (counterbody) is modeled by the action of normal p(x) and alternating tangen-
tial q±(x) forces distributed according to the elliptic (Hertzian) law. Note that the
tangential forces have a somewhat more complicated distribution than the normal
forces, which enables us to model [33, 34] the presence not only of the sections of
slipping but also of the sections of sticking in contact between the bodies. Hence,
we represent the normal and tangential components of the model contact load on the
boundary of the half-plane (y = 0) in the form

p(x) = p0
a

√
a2 − (x − x0)

2, |x − x0| ≤ a;

q±(x) =

⎧
⎪⎨

⎪⎩

± f
p0
a

√
a2 − (x − x0)

2, −a ≤ x − x0 ≤ −c, c ≤ x − x0 ≤ a;
± f

p0
a

[√
a2 − (x − x0)

2 −
√
c2 − (x − x0)

2

]
, |x − x0| ≤ c,

(5.13)

where 2a is the length of the contact section, p0 is themaximal pressure in this section,
and f is the coefficient of friction between the bodies. The identically distributed
tangential forces q+(x) and q–(x) with opposite directions form a contact cycle and
correspond to its positive and negative phases. The relative length of the section of

sticking c/a is given by the formula c/ a =
√
1 − ∣∣Q

/
f P

∣∣, where Q and P are,
respectively, the tangential and normal components of the vector of external load
(Q ≤ fP). Note that the distribution of forces (5.13) in the contact section between
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two elastic cylinders in the presence of partial sticking was established for the first
time in [5].

Assume that, in the contact (compression) zone, the macrocracks first (in the
initial stage) propagate by the shear (mode II) mechanism almost rectilinearly at an
angle typical of a given fretting couple and then, when the cracks enter the region
tension, their growth occurs by the normal opening (mode I) mechanism, and the
trajectorybecomes curvilinear.Wenowconsider the second stage.The crackpaths are
constructed step-by-step by using the σθ-criterion of local fracture, the characteristics
of cyclic crack growth resistance of thematerial, and the solutions of singular integral
equations of the corresponding stationary problems of the theory of elasticity.

As already indicated, in each stageof constructionof the crackpaths, it is necessary
to find the SIF at the crack tip from the corresponding SIE. In our case, this is the SIE
(3.151) for the plane problem of the theory of elasticity for the half-plane weakened
by an edge curvilinear crack along the contour L under the action of model contact
load (5.13) on the half-plane boundary (Fig. 5.25). We assume that this crack is free
of loads and its faces are not in contact.

For the boundary conditions formulated above (5.13), the right-hand side of the
SIE (3.151) take the form (3.180), i.e.,

P(η) = p0
{
Re[( f − i)(b(η) + ia(η))]w′(η)

− i(1 − i f )

(
b(η)

a(η)
− i

)

Im
(
w(η)εeiα + γ

)×

× w′(η)e−2iα − f
(
b(η) − ia(η)

)
w′(η)e−2iα}

− p0 f
{ c
a
Re(b1(η) + ia1(η)) w′(η)+

+ i

(

1 + i
b1(η)

a1(η)

)

Im
(
w(η)εeiα + γ

)
w′(η)e−2iα

− c

a

(
b1(η) − ia1(η)

)
w′(η)e−2iα

}
; (5.14)

here, t = w(η) is the parametric equation of crack contour L; ε = l0/a;
a(η) = √

1 − b2(η); b(η) = eiαw(η)
/
a + γ − λ; λ = x0/a; γ = z01/a;

a1(η) =
√
1 − b21(η); λ1 = x0/c; b1(η) = eiαw(η)

/
c + γ1 − λ1; γ1 = z01/c; l0

is the length of the initial macrocrack (for simplicity, its is regarded as rectilinear),
z01 is the complex coordinate of the origin of the local coordinate system x1O1y1 in
the main coordinate system xOy, and α is the angle between the O1x1-axis and the
Ox-axis (Fig. 5.25).

To determine favorable conditions for crack propagation by the mode I mech-
anism, we study the SIFs (K I, K II, K Iθ) and the angle θ* for initially rectilinear
edge cracks. We analyzed cracks whose mouth is mainly located outside the contact
section. The calculations were performed for broad ranges of the operating param-
eters (f = 0.3…0.9; Q/fP = 0.27, 0.67, 1.00) and the parameters of location of the
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Table 5.6 Threshold values
of sticking section length

Q/fP 1,00 0,67 0,27

c/a 0,00 0,57 0,85

crack (λ = x0/a = 0.8…3.0; ε = l0/a = 0.1, 0.5; β = π/6, π/4, π/3, π/2, 2π/3, 5π/6).
For the sake of convenience, we assumed that the origins of the main and local coor-
dinate systems are located in the crack mouth (z01 = 0) and theO1x1-axis is directed
along the crack (α = –β) (Fig. 5.25). Without loss of generality of formulation of
the analyzed problem, the crack mouth is placed near the left end of the contact
section (λ ≥ 0.8). In Table 5.6, we present the relative lengths c/a of the section of
sticking corresponding to the chosen ratios of the vector of tangential component
of the contact load Q to its limit value fP corresponding to the full slipping of the
contacting bodies.

The analysis of the dependences of SIF (presented in Figs. 5.26, 5.27 and 5.28) on
the parameters λ, β, ε, f, and c/a for an initially rectilinear edge crack demonstrates
that, in the negative phase of the contact cycle (q(x) = q–(x), Fig. 5.25), the crack is
mainly located in the compression zone (K−

I < 0). At the same time, in the positive
phase (q(x) = q+(x)), it is located in the zone of tension (K+

I > 0). Hence, we
investigate the SIF and the crack growth paths for the positive phase of the contact
cycle.

In Figs. 5.26, 5.27 and 5.28, we show the dependences of the normalized SIF
F+ = K+/(

p0
√

πa
)
on the main parameters of problem for the positive phase

of cyclic fretting fatigue. Here and in what follows, we omit the superscript “+”.
As follows from the presented plots, the stress intensity factors strongly depend on
the initial crack orientation (Figs. 5.26 and 5.27, Tables 5.7 and 5.8) when there
is no sticking in contact. The maximum values of K I(λ, β) are, as a rule, reached
for cracks inclined to the edge of the half-plane at the angles β = π/3…π/2, the
maximum K Iθ(λ, β) are attained at the angles β = π/6…π/2, while max |K II(λ, β)|
mainly reached at the angles β = π/6 (sometimes, at β = 5π/6). If the relative length
of the initial crack is small (ε = 0.1), then the maxima of the SIF K Iθ (max K Iθ(λ) =
K Iθ(λ*)= K ∗

Iθ) are realized forλ=λ* ≈ 1.0.As the crack length increases, both under
the conditions of full slipping and in the presence of a section of sticking, the maxima
of the SIF K Iθ are realized for higher values of λ*, i.e., the region favorable for crack
propagation by the opening mechanism moves away from the end of the contact
section. The appearance of the section of sticking leads to a substantial decrease in
the SIF (Fig. 5.28, Tables 5.7 and 5.8). Thus, for the collection of the parameters
f = 0.8; β = π/3; ε = 0.1 (λ* ≈ 1.1), we get F∗

Iθ(c/a = 0) = 0.327; F∗
Iθ(c/a = 0.57)

= 0.224 and F∗
Iθ(c/a = 0.85) = 0.073, i.e., F∗

Iθ becomes, first, lower by one-third as
compared with the case of full slipping and then more than fourfold lower.

In the case of full slipping, the maximum values of the SIF weakly depend on the
crack length (within the range ε = 0.1…0.5) and, in the presence of sticking, suffer
a significant shifted to the side of small cracks (ε = 0.1).
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Fig. 5.26 Dependences of the normalized SIF on the location of an edge initially rectilinear
arbitrarily oriented crack in the case of full slipping in contact between the bodies (c/a = 0);
f = 0.5

The friction coefficient strongly affects the values of FI, FII, and FIθ, especially
in the absence of sticking in contact (c/a = 0): the higher the friction, the greater the
SIF.

It is worth noting that the obtained results are in good agreement with the data
presented in [21].

In the investigations of convergence of the process of calculations, depending on
the choice of the parameterM, i.e., the order of the system of algebraic equations, it
was established that if M = 40, then we most often obtain four true decimal digits
in the values of the SIF; at the same time, for M = 60, there are five true digits.
Furthermore, the convergence becomes worse as the length of the sticking section
(c/a) and the relative crack length increase, and the worst case is realized when
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Fig. 5.27 Dependences of the SIF on the location of an edge initially rectilinear arbitrarily oriented
crack in the case of full slipping in contact between the bodies (c/a = 0); f = 0.8

the crack mouth is located at the end of the section of contact loading (λ = 1.0).
All calculations were performed for the order of the system of algebraic equations
M = 60 with steps �λ = 0.01.

Crack growth paths (trajectories). In Figs. 5.29, 5.30 and 5.31, we show the
dependences of the paths of edge initially rectilinear cracks on the angle β of its
inclination to the half-plane boundary and also on its relative initial length ε, relative
length of the section of sticking c/a, and the friction coefficient f. These plots were
constructed in the coordinate system x1O1y1 for z01 = x0 – a. The numerical data pre-
sented in Table 5.9 supplement these dependences. We also studied the dependence
of the crack growth paths on the distance between the crack mouth and the center
of the section of contact loading (parameter λ), which is graphically represented in
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Table 5.7 Maximal normalized SIF F∗
Iθ and the corresponding values of λ∗ = x∗

0

/
a for different

angles β between the initial crack and the half-plane boundary; f = 0.5

β ε = l0/a = 0.1 ε = 0.5

F∗
Iθ λ* FI FII F∗

Iθ λ* FI FII

c/a = 0 (Q/fP = 1.00)

π/6 0.1479 1.01 0.0100 0.1233 0.1537 1.68 0.1277 0.0523

π/4 0.1695 0.96 0.0552 0.1187 0.1521 1.76 0.1401 0.0350

π/3 0.1686 0.99 0.1294 0.0676 0.1462 1.78 0.1436 0.0159

π/2 0.1688 1.04 0.1678 −0.0104 0.1397 1.66 0.1357 −0.0195

2π/3 0.1645 0.90 0.0559 −0.1139 0.1382 1.30 0.1157 −0.0461

5π/6 0.1319 0.96 0.0111 −0.1089 0.1388 0.93 0.0088 −0.1160

c/a = 0.57 (Q/fP = 0.67)

π/6 0.0960 1.12 0.0733 0.0389 0.0849 1.82 0.0722 0.0271

π/4 0.1145 0.97 0.0118 0.0934 0.0790 2.02 0.0730 0.0178

π/3 0.1094 1.11 0.1038 0.0203 0.0739 2.14 0.0724 0.0087

π/2 0.1091 1.08 0.1080 −0.0090 0.0695 2.11 0.0681 −0.0081

2π/3 0.1085 0.90 0.0034 −0.0924 0.0703 1.70 0.0601 −0.0220

5π/6 0.0917 0.97 0.0104 −0.0744 0.0791 0.95 0.0060 −0.0656

c/a = 0.85 (Q/fP = 0.27)

π/6 0.0346 1.15 0.0287 0.0118 0.0128 1.76 0.0002 −0.0110

π/4 0.0326 1.19 0.0298 0.0078 – – – –

π/3 0.0303 1.23 0.0294 0.0042 – – – –

π/2 0.0283 1.25 0.0280 −0.0023 – – – –

2π/3 0.0292 1.15 0.0257 −0.0083 0.0096 1.69 0.0002 0.0082

5π/6 0.0307 0.99 0.0123 −0.0202 0.0138 2.01 0.0106 −0.0055

Comment: The dashes correspond to KI < 0

Figs. 5.32 and 5.31 and numerically in Tables 5.10 and 5.11. On the basis of the
analysis of these data, we can make the following conclusions:

• As the friction coefficient f decreases and the section of sticking becomes larger,
the SIF both for the initial cracks (Fig. 5.28) and along their crack growth paths
(Fig. 5.29) noticeably decrease (Table 5.9), and the crack paths become more
gently sloping relative to the half-plane boundary and stronger deviate from the
contact zone. In particular, in the case of initially longer cracks (ε = 0.5), in the
presence of large section of sticking, and for low friction coefficients, the cracks
initially directed to the side of the contact zone (β ≤ π/2) do not propagate for
all (K I < 0) (therefore, their trajectories are not depicted in Fig. 5.29b, unlike the
trajectories in Figs. 5.29a, 5.30a, and 5.31a).

• the described trends and the data presented in Table 5.9 are in good agreement with
two main approaches to the structural and technological elevation of the fretting
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Fig. 5.28 Dependences of the SIF for an edge initially rectilinear crack on its location and the
relative length c/a of the sticking section; β = π/3; the solid lines correspond to f = 0.8 and the
dashed lines correspond to f = 0.5

fatigue strength formulated in themonograph by Shevelya andKalda [57], namely,
the increase in strength is realized either by removing the displacements of one
surface over the other or, on the contrary, by the facilitation of these displacements,
i.e., by guaranteeing that they are realized with the minimum possible friction.

• For initially short cracks (ε = 0.1), the variation of the inclination angle β weakly
affects the shape of the trajectories of their propagation (Figs. 5.30a and 5.31a);
for longer cracks (ε = 0.5), the influence of the angle β is stronger, especially
in the initial stage of crack propagation; in the case of subsequent propagation,
independently of the angle of orientation, the crack paths attain their own asymp-
totes determined by the friction coefficient f for every relative length of the section
of sticking (see Figs. 5.30b and 5.31b).
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Table 5.8 Maximum SIF F∗
Iθ and the corresponding values of λ∗ = x∗

0

/
a for different angles β

between the crack and the half-plane boundary; f = 0.8

ε = l0/a = 0.1 ε = 0.5

β F∗
Iθ λ* F∗

Iθ λ* F∗
Iθ λ* F∗

Iθ λ*

c/a = 0 (Q/fP = 1.00)

π/6 0.3233 0.84 0.0016 0.2792 0.3634 1.09 0.0077 0.3111

π/4 0.3196 0.97 0.2235 0.1462 0.3566 0.94 0.0929 0.2623

π/3 0.3273 0.99 0.2964 0.0826 0.3235 1.43 0.3210 0.0233

π/2 0.3240 0.99 0.3199 −0.0300 0.3124 1.25 0.2974 −0.0561

2π/3 0.3006 0.93 0.1917 −0.1516 0.3017 0.80 0.0951 −0.2130

5π/6 0.2209 0.94 0.0005 −0.1911 0.2482 0.90 0.0055 −0.2123

c/a = 0.57 (Q/fP = 0.67)

π/6 0.2376 0.94 0.0076 0.2022 0.1932 1.59 0.1681 0.0575

π/4 0.2243 0.98 0.1493 0.1085 0.1844 1.65 0.1748 0.0346

π/3 0.2240 1.00 0.2037 0.0556 0.1745 1.67 0.1732 0.0123

π/2 0.2213 1.00 0.2182 −0.0214 0.1649 1.55 0.1581 −0.0274

2π/3 0.2067 0.97 0.1545 −0.0864 0.1615 1.22 0.1324 −0.0567

5π/6 0.1548 0.96 0.0189 −0.1249 0.1520 0.93 0.0098 −0.1269

c/a = 0.85 (Q/fP = 0.27)

π/6 0.0759 1.11 0.0631 0.0258 0.0408 2.03 0.0358 0.0118

π/4 0.0756 1.12 0.0697 0.0174 0.0356 2.50 0.0328 0.0082

π/3 0.0726 1.12 0.0713 0.0080 0.0327 2.82 0.0317 0.0046

π/2 0.0690 1.10 0.0673 −0.0088 0.0304 2.93 0.0301 −0.0026

2π/3 0.0687 1.03 0.0580 −0.0224 0.0404 1.00 0.0017 0.0342

5π/6 0.0617 0.98 0.0110 −0.0480 0.0337 1.29 0.0250 −0.0143

Fig. 5.29 Dependences of the crack growth paths on the friction coefficient f and the length of the
section of sticking in contact between the bodies; β = π/2
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Fig. 5.30 Dependences of the crack growth paths on the initial angle β between the crack and the
half-plane boundary; f = 0.5

Fig. 5.31 Dependence of the crack growth paths on the initial angle β between the crack and the
half-plane boundary; f = 0.8

• The shapes of the paths weakly depend on the distance between crack mouth
and the boundary of contact loading (for fixed values of the other parameters)
(Figs. 5.32 and 5.33); furthermore, if the crack lengths significantly increase, then
the crack growth paths attain an asymptote characteristic typical of the fixed value
of f.

In general, the presented analysis of the kinetics of propagation of edge cracks
under the conditions of fretting fatigue demonstrates that the initial edge macro-
cracks initiated outside the contact section do not appear on the boundary of the
body (half-plane) and grow into the bulk of the material in the direction from the
zone of contact loading (Figs. 5.29, 5.30, 5.31, 5.32 and 5.33). For initially longer
cracks (ε = 0.5), the SIF decrease along their paths (Tables 5.9, 5.10 and 5.11) and,
for initially shorter cracks (ε = 0.1), the SIF increase for a certain time and then
also decrease (Table 5.9). In the case of full slipping, we observe similar trends if a
constant pressure plays the role of model contact load [9, 22, 47].
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Table 5.9 Normalized SIF
FIθ(l) along the crack growth
paths depending on the
friction coefficient f and the
relative length of the sticking
section c/a; k is the step
number in the process of the
path construction

β = π/2, ε = 0.1, λ = 1.1

full slipping (c/a = 0) sticking/slipping; f = 0.5

k f c/a

0.3 0.7 0.9 0 0.57 0.85

FIθ(l)

1 0.0786 0.2532 0.3406 0.1658 0.1087 0.0233

2 0.0784 0.2543 0.3424 0.1663 0.1087 0.0225

3 0.0782 0.2555 0.3444 0.1667 0.1086 0.0217

4 0.0780 0.2568 0.3464 0.1672 0.1085 0.0209

5 0.0777 0.2579 0.3482 0.1676 0.1084 0.0200

30 0.0683 0.2774 0.3839 0.1715 0.0999 0.0151

60 0.0573 0.2837 0.4044 0.1647 0.0822 0.0143

90 0.0511 0.2794 0.4104 0.1526 0.0674 0.0138

120 0.0474 0.2692 0.4078 0.1395 0.0596 0.0134

145 0.0451 0.2583 0.4010 0.1293 0.0560 0.0142

Table 5.10 Normalized SIF
FIθ(l) along the crack growth
paths depending on the
distance from the crack
mouth to the section of
contact loading for friction
coefficient f = 0.5; k is the
number of step in the process
of construction of the path

k β = π/3, ε = 0.5, c/a = 0.57, f = 0.5

λ = 1.84 λ = λ* = 2.14 λ = 2.44

FIθ(l) (FIθ(l0, λ*) = max FIθ(l0, λ))

1 0.0696 0.0739 0.0720

2 0.0682 0.0733 0.0718

3 0.0666 0.0726 0.0715

4 0.0650 0.0718 0.0712

5 0.0633 0.0709 0.0708

30 0.0376 0.0389 0.0521

60 0.0358 0.0336 0.0296

90 0.0334 0.0321 0.0307

120 0.0314 0.0304 0.0292

Note that all paths studied abovewere constructedwith increments of their growth
[47, 53] h = 0.02l0 (see Fig. 5.25) and, in each step, the satisfactory accuracy of
calculations was guaranteed for the order of the system of algebraic equations M =
80.
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Table 5.11 Normalized SIF
FIθ(l) along the crack growth
paths depending on the
distance between the crack
mouth and the section of
contact loading for friction
coefficient f = 0.8; k is the
number of step in the process
of construction of the path

β = π/3, ε = 0.5, s/a = 0.57, f = 0.8

k λ = 1.37 λ = λ* = 1.67 λ = 1.97

FIθ(l) (FIθ(l0, λ*) = max FIθ(l0, λ))

1 0.152 0.174 0.165

2 0.149 0.173 0.165

3 0.145 0.171 0.165

4 0.142 0.170 0.165

5 0.139 0.168 0.164

30 0.101 0.111 0.138

60 0.087 0.083 0.082

90 0.078 0.076 0.073

120 0.072 0.070 0.068

150 0.066 0.066 0.064

Fig. 5.32 Dependence of
the crack growth paths on the
distance between the crack
mouth and the section of
contact loading; f = 0.5

Fig. 5.33 Dependences of
the crack growth paths on the
distance between the crack
mouth and the section of
contact loading; f = 0.8
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5.5 Influence of Rounding of Counterbody Base Edges

The profiles of the elements of numerous nominally immovable connections are
rectangular and, in the contact zones of these elements, near corner points (ribs), we
observe significant stress concentrations. Cracks are often initiated in these zones and
become especially dangerous (quickly propagate) in the case where the joint is sub-
jected to in-service vibration and its elements interact under the conditions of fretting
fatigue [66]. Therefore, in practice, the indicated corner points are smoothened by
rounding the edges of the bases of contacting bodies (Fig. 5.34). Hence, the problem
of influence of the stress concentration and, in particular, of the radius of rounding
of the base of counterbody on the stress intensity factors (SIF) at the tip of a crack
present in the contact zone is an important problem both for the engineering practice
and for the theoretical strength analysis of the contacting systems.

To model the interaction of bodies in the joints and, in particular, the fracture
processes in the contact zone, it is customary to use model problems in which a
damaged main body is regarded as an elastic half-plane (a cylinder of infinite radius)
with cracks and the action of the counterbody is modeled either by the pressure of an
elastic or rigid punch with rounded edges (Fig. 5.34) or by the corresponding contact
load (Fig. 5.35).

The problems of pressure of a rigid punch with base of any shape onto the elastic
half-plane weakened by a system of curvilinear cracks were considered in [45, 46,

Fig. 5.34 Model scheme of
contact interaction

Fig. 5.35 Computational
scheme of the problem with
model load
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54]. Similar problems for a system of rectilinear cracks were studied in [38] with
the help of asymptotic approaches. In particular, in the case of pressing of a rigid
rectangular punch into the half-plane, the numerical values of the SIF were obtained
for an inner vertical crack in [45], for horizontal and vertical cracks in [46], and
for an inclined edge crack in [55]. These problems are reduced to singular integral
equations. A series of works dealing with the analysis of a half-plane weakened by
an inclined edge crack and subjected to the action of a punch one of the edges of
which is rounded and the other is pointed on the basis of the method of conformal
mappings was published by Hasebe and Qian [32]. One of the first solutions in this
direction was obtained by Tonoyan andMinasyan [62] by the method of dual integral
equations. A fairly detailed survey of these publications can be found in [46, 54].

As a model load under the conditions of fretting fatigue contact interaction, it is
customary to use uniformly distributed pressures, concentrated forces, and elliptic,
linear, parabolic, and other distributions. The corresponding investigations were ini-
tiated and developed by Rooke and Jones [52] and Edwards [25, 26]. The surveys of
these works can be found in [11, 16, 21, 36]. However, in these investigations, the
base of the counterbody is, most often regarded as smooth and convex or rectangular
without rounding. In other words, among the available works, there are no investi-
gations in which the influence of the radius of rounding of the base of counterbody
on the stress intensity factors near the crack tips located in the contact zone is taken
into account.

Model contact load. As a continuation of [20, 21], we solve the problem of stress-
strain state near the tip of an edge crack in the elastic half-plane subjected to the action
of a model load on its boundary. This load characterizes the pressure distribution
formed in the course of pressing of a flat elastic punchwith horizontal rectilinear base
with rounded edges and an arbitrary radius of roundingR (Fig. 5.35). This distribution
was established on the basis of the solution of the contact problemof compressing two
elastic cylinders along the initial contact strip obtained by Aleksandrov and Romalis
[1]. The corresponding model load contained the tangential component taking into
account the presence of slipwith unidirectional friction in contact between the bodies.
The problem was reduced to a singular integral equation and numerically solved by
the method of mechanical quadratures. The influence of the radius of rounding of
the edges of the punch (counterbody), the level of friction between the punch and the
half-plane, and the location, length, and orientation of crack on the stress intensity
factors was investigated.

Hence, we assume that one of contacting cylindrical bodies is damaged by an
edge macrocrack. We simulate this body by an elastic half-plane with rectilinear
crack (cut) (Fig. 5.35) and the contact influence of the other body (counterbody) is
modeled by the action of normal static pressure distributed according to a certain
law p(x) over the contact section of length 2a and alternating tangential forces q(x)
connected with it by the Amontons–Coulomb law via the friction coefficient f, i.e.,
the conditions of full slipping are realized between the analyzed contact bodies.

The boundary conditions of this problem take the form
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σy(x ) ± iτxy(x ) = −p (x ) (1 ∓ i f ), |x − x0| ≤ a, y = 0;
σy(x ) − iτxy(x ) = 0, |x − x0| > a, y = 0,

(5.15)

where x0 is the abscissa of the middle of the section of external loading in the system
xOy. We assume that crack faces are free of loads and do not contact.

We determine the law of distribution of pressure p(x) from the solution of contact
problem of compression of two elastic cylinders with an initial contact strip of length
2b [1]:

p(x) = P(1 + δ)

bπF(δ)

[
(π − 2ϕ0) cosϕ + sin ϕ ln

∣∣∣∣
sin(ϕ + ϕ0)

sin(ϕ − ϕ0)

∣∣∣∣+

+ sin ϕ0 ln

∣∣∣∣tg
ϕ + ϕ0

2
tg

ϕ − ϕ0

2

∣∣∣∣

]
= p̃

(
x ′),

(5.16)

ϕ = arcsin
x − x0

a
, ϕ0 = arcsin

1

1 + δ
, δ = (a − b)

/
b, x ′ = x − x0,,

F(δ) = π − 2ϕ0

2 sin2 ϕ0
− ctgϕ0. (5.17)

Here, P is the main vector of normal forces in the contact load upon the counter-
body (Fig. 5.34), 2b is the length of the initial contact line, and 2a is the complete
length of this line which increasing as a result of contact between the bodies. In this
case, the parameter δ characterizes the increment of length of the contact line and is
connected with the radius R by the formula

R = b2EF(δ)

4P
(
1 − ν2

) , (5.18)

where E and ν are the elastic constants of the materials (we also consider the case
where the materials of the contacting bodies are identical). We determine the param-
eter δ and, hence, the length of the contact section 2a (for a given radius of rounding
R of edges of the punch, the length of the initial contact line 2b, and the force of
pressing P given by relations (5.17) and (5.18)) from the transcendental equation

π − 2ϕ0

2 sin2 ϕ0
− ctgϕ0 = 4PR

(
1 − ν2

)

b2E
. (5.19)

First, we determine the distribution of contact pressure p̃
(
x ′) = p(x) (5.16)

under the punch and the length 2a of the contact section as functions of the radius of
rounding R of the edges of the punch base under the condition of its smooth contact
(f = 0, q = 0) with the boundary of the half-plane along the initial line of length 2b
under the action of the pressing force P (Fig. 5.34). For this purpose, we use rela-
tions (5.16)–(5.19). In particular, the determination of length of the contact section
is reduced first to the solution of the transcendental Eq. (5.19) and then to finding
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Fig. 5.36 Curves of
distribution of the
normalized pressure
p1 = p̃

(
x ′)πb

/
P

near the left end of the
contact section;
P = 2.0 MN/m; b = 5 mm;
ν1 = ν2 = ν = 0.3;
E1 = E2 = E = 210 GPa

the distribution of contact pressure by using relation (5.16). For subsequent inves-
tigations, we choose the following rounding radii for the edges of the counter-
body: R = 0.1, 1.0, 10.0, 100.0 mm. The forces of indentation of the punch are
P = 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 MN/m. We perform our calculations for the following
values of the initial half length of the contact section (half width of the contact strip):
b = 5 and 10 mm. Note that these values of the force P and the width of the initial
strip of the contact section b are chosen with regard for the typical values of pressure
of the contact patches onto the base (structural element) in the course of experimental
investigations of the fretting fatigue contact interaction and also in the engineering
practice [57, 66].

In Fig. 5.36, we present the plots of normalized contact pressure depending on
the rounding radius R. The shape of the curves is similar to the curves available
from the literature [1]. The numerical data (Fig. 5.36, Table 5.12) show that, as the
radius R decreases by an order of magnitude, the maximal values p̃max of contact
pressure in the half-plane near the edges of counterbody becomemuch (almost twice)
higher. In addition, the increase in the radius R leads to the growth of the contact
section (significant for R = 100 mm). As expected, the level of pressure at the
center of the contact section p̃(0) weakly depends on R (for given P) but strongly
varies as a function of the force P. For the values of P (Table 5.12) within the
range 0.1…40 MN/m chosen for calculations, the quantity p̃(0) takes the values
20…200 MPa.

It should be emphasized that the length of initial contact line weakly affects the
behavior of contact pressure near the edges of the punch and also the final lengths of
the contact section depending on the radius of rounding of the edges. However, for
lower values of b (and identical P and R), we obtain larger increments δ and higher
values of p̃max.

Stress intensity factors. The determination of the SIF for the problem with
boundary conditions (5.15) is reduced to the solution of the singular integral equa-
tion (3.151) with the right-hand side P(η), where the functions Φ0(z) and Ψ0(z) can
be found from relations (3.122) and (3.176). These relations are the images of the
Muskhelishvili complex potentials Φ0(z) and Ψ0(z) [41, 48, 53] in the first main
problem of the theory of elasticity for a half-plane without cracks when the pressure
p(x) [(5.15), (5.16)] acts upon the half-plane boundary. Thus, we get
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Table 5.12 Half length a of the actual (enlarged) contact section, pressure p̃(0) in its central part,

and the maximum pressure p̃max under the edges of counterbody depending on its loading by the
force P and the geometric parameters of the punch base (R, b)

R, mm b = 5 mm b = 10 mm

a, mm p̃(0), MPa p̃max, GPa a, mm p̃(0), MPa p̃max, GPa

P = 0.1 MN/m

0.1 5.0012 6.37 0.44 10.0010 3.18 0.35

1.0 5.0055 6.36 0.20 10.0044 3.18 0.16

10.0 5.0256 6.35 0.11 10.0204 3.18 0.09

100.0 5.1185 6.28 0.05 10.0943 3.17 0.04

P = 0.5 MN/m

0.1 5.0035 31.82 1.28 10.0028 15.91 1.02

1.0 5.0162 31.77 0.63 10.0128 15.90 0.47

10.0 5.0748 31.55 0.33 10.0595 15.86 0.26

100.0 5.3429 30.58 0.15 10.2747 15.66 0.12

P = 1.0 MN/m

0.1 5.0055 63.62 2.03 10.0044 31.82 1.61

1.0 5.0256 63.47 1.12 10.0204 31.79 0.86

10.0 5.1185 62.77 0.52 10.0943 31.65 0.41

100.0 5.5396 59.81 0.24 10.4345 31.02 0.19

P = 2.0 MN/m

0.1 5.0088 127.19 3.22 10.0070 63.64 2.56

1.0 5.0407 126.71 1.79 10.0323 63.54 1.42

10.0 5.1875 124.53 0.83 10.1496 63.10 0.66

100.0 5.8455 115.68 0.38 10.6858 61.15 0.31

P = 3.0 MN/m

0.1 5.0115 190.72 5.06 10.0091 95.44 4.02

1.0 5.0533 189.77 2.35 10.0423 95.25 1.87

10.0 5.2450 185.54 1.09 10.1958 94.39 0.87

100.0 6.0966 168.96 0.48 10.8945 90.65 0.40

P = 4.0 MN/m

0.1 5.0139 254.22 6.13 10.0111 127.24 4.87

1.0 5.0645 252.69 2.85 10.0513 126.93 2.26

10.0 5.2961 245.93 1.31 10.2369 125.54 1.05

100.0 6.3169 220.24 0.57 11.0793 119.62 0.48
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Fig. 5.37 Dependences of the normalized SIF FI,II = KI,II
√

πb/P on the distance from themiddle
of the contact section to the crack mouth for the angle of its inclination β = π/3 and f = 0.5: (1)
r = R/b = 0.02; (2) r = 0.20; (3) r = 2.00; (4) r = 20.00; (5) uniformly distributed pressure

Φ0(t) = 1 + i f

2πi

x0+a∫

x0−a

p(x)

x − t
dx;

Ψ0(t) = 1

2πi

x0+a∫

x0−a

[
(1 − i f )p(x)

x − t
− (1 + i f )xp(x)

(x − t)2

]
dx .

(5.20)

For the numerical solution of problem in this case, we apply the Simpson quadra-
ture formula [65] to the right-hand side of the SIE.

The preliminary numerical analysis of the dependences of SIF for a rectilinear
crack on the parameters ε = l/b, β, λ = x0/b, and f (Fig. 5.35) demonstrates that, in
the negative phase of the contact cycle where q = q– = –fp(x), the crack is located
mainly in the zone of compression (K I < 0), whereas in the positive phase, where
q = q+ = + fp(x), it is located in the zone of tension (K I > 0). Therefore, in what
follows, we present the SIF for the positive phase.

In Figs. 5.37, 5.38 and 5.39, we present the dependences of the normalized SIF

FI,II = KI,II

√
πb

/
P (curves 1–4) on the relative distance λ = x0/b from the middle

of the contact section to the crack mouth for the values of the parameters typical
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Fig. 5.38 Dependences of the normalized SIFFI andFII on the distance frommiddle of the contact
section to the crack mouth for the angle of its inclination β = π/4 and f = 0.5: (1) r = R/b = 0.02;
(2) r = 0.20; (3) r = 2.00; (4) r = 20.00; (5) uniformly distributed pressure

mainly of fretting fatigue, namely, the angles made by the crack with the half-plane
boundary β = π/4, π/3, 2π/3, the ratio of the crack length to the half length of the
initial contact section ε = l/b = 0.1 and 0.5, and the coefficient of friction between
the contacting bodies f = 0.5. The ratio of the radius of rounding of the punch base
to the half length of the initial contact section r = R/b = 0.02, 0.20, 2.00, 20.00. The
model contact load is given by relations (5.15)–(5.19). For the sake of comparison,
in these figures, we also present the SIF obtained for the case of action of a pressure
p uniformly distributed over the segment 2b and tangential forces q = fp (curves 5)
upon the edge of the half-plane weakened by a crack; in this case, 2pb = P.

The accumulated results demonstrate that a significant (by three orders of mag-
nitude) decrease in the radius of rounding R of the edges of the counterbody leads
to an insignificant increase (by at most 10%) in the maximum values of the SIF
K I (Figs. 5.37a, c, 5.38a,c and 5.39a, c) and to a much more pronounced (almost
twofold) growth of the maximal SIF | K II |, especially for the acute angles β (β = π/3
and π/4) and short cracks (ε = 0.1) (Figs. 5.36b, d, 5.37b, d, 5.38b, d and 5.39b, d).
However, max| K II | are attained mainly for K I < 0. Hence, the obtained quantitative
estimate is approximate. The exact estimation requires the solution of the problem
with regard for the contact of crack faces.
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Fig. 5.39 Dependences of the normalized SIF FI and FII on the distance from the middle of the
contact section to the crack mouth for the angle of its inclination β = 2π/3 and f = 0.5: (1) r =
R/b = 0.02; (2) r = 0.20; (3) r = 2.00; (4) r = 20.00; (5) uniformly distributed pressure

The functions FI(λ) and FII(λ) for the model load with uniformly distributed
pressure (the dashed curves 5 in Figs. 5.37, 5.38 and 5.39) in the analyzed cases are
qualitatively and often even quantitatively close to the corresponding main curves,
in particular, to curves 1–3 for small radii of rounding R of the counterbody edges.
Hence, one can use this distribution to model the contact interaction of fretting
fatigue. As expected, the maxima of K I and | K II | in curve 4 for large radius of
rounding are realized for larger λ than in the other cases (curves 1–3, 5), i.e., when
the load is located at greater distances from the crack mouth.

The influence of rounding rapidly disappears as the distance from the contact load
to the crack mouth independently of the angle of its orientation (Figs. 5.37, 5.38 and
5.39). Even for λ = x0/b > 1.8, the difference between the SIF in curves 1–4 does
not exceed 1–5%. As the relative crack length ε increases from 0.1 to 0.5, the values
of max | K II |, in general, become higher, while the values of max K I decrease (see
also [21]). The maxima of the SIF K I are realized for greater λ and the influence of
R becomes weaker.

The results of additional calculations show that, for the other values of the friction
coefficient (f = 0.3 and 0.7), the influence of the rounding radius R on the SIF K I is
insignificant, as in the case of f = 0.5.

Comparing our results with the data presented in [55] for a plane rectangular rigid
punch indented with friction into the half-plane weakened by a crack (Fig. 5.40), we
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Fig. 5.40 Dependences of the normalized SIF FI,II = KI,II
√

πb/P on the distance from themiddle
of the contact section to the crack mouth for β = 3π/4; f = 0.3; ε = 1.0; curves 1 correspond to the
results from [55] and curves 2 correspond to our data

conclude that, for K II, our data are close to the results from [55]. At the same time,
for K I, they practically coincide starting from λ = 15; however, for λ ≤ 2, i.e., when
the punch edge or the load are close to the crack mouth, the corresponding data are
noticeably different. A similar picture is observed in [26]. The indicated discrepancy
is explained by the fact that the curves similar to curves 1 in Fig. 5.40 were obtained
in [26] on the basis of the solutions in which the presence of square-root singularity
of stresses under the edges of the punch was a priori assumed. However, if we use
the model forces p(x) (5.16), then the stresses are finite.

5.6 Shear and Opening Edge Cracks in Contact Zone
of Fretting Pair Elements

Edge cracks very often appear in the elements of fretting pairs (couples) both in the
contact zone and beyond it (Fig. 5.41; [51]). It is known [59, 66] that these cracksmay
decrease the fatigue life of the elements of units and machines almost by an order of
magnitude. As one of the simplest and widespread model schemes (problems) in the
two-dimensional case, which can be used for the investigation the processes of crack
propagation in the contact zone of elements of fretting couples, we can mention the
model of elastic half-plane with cracks subjected to the action of a model contact
load on the boundary. The SIF for an edge crack whose faces do not contact in
the contact cycle under the action of model loads were investigated in numerous
works (see, e.g., the surveys [16, 21]). However, in the case where the crack faces
are in contact in the loading cycle, the problem becomes more complicated and the
number of corresponding solutions available from the literature is insignificant [13].
Furthermore, if the contact load in a cycle is alternating, then the problem becomes
even more complicated, especially if it is necessary to establish the ranges of the
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Fig. 5.41 Microcracks in the zone of friction track after tests performed under the conditions of
fretting corrosion [51]. The conditions of vibration contact loading: p = 19.6 MPa; slip amplitude
A = 125 μm; ν = 25 Hz; T = 293 K; N = 5·105 cycles. Both elements of the couple are made of
VT3-1 (BT-3) titanium alloy (×210)

Fig. 5.42 Computational
scheme of the problem, that
take into account friction
between crack faces

SIF �K II and �K Iθ controlling the process of crack growth by the mechanisms of
transverse shear and normal opening, respectively.

In what follows, within the framework of the model used to estimate the lifetime
of solids under the conditions of their fretting fatigue contact interaction [12, 47], we
study the SIFs K I and K II, the mixed-type SIFs K Iθ and K IIθ, and also their ranges
�K Iθ and �K IIθ for the edge cracks in the contact zone in the course of mutual
displacement of the elements of fretting couples in a single contact cycle (Fig. 5.42).
We analyze the dependence of the SIFs on the orientation of the edge crack, the level
of friction between its faces, and the location of its mouth relative to the counterbody
(model contact load). On the basis of the analysis of values of the parameters �K II

and �K Iθ = max K Iθ, we analyze possible mechanisms of propagation of the edge
cracks in the contact zone (transverse shear and normal opening), as well as the
most probable their locations and directions of propagation depending on the sets of
operating parameters of the fretting couple.

According to themain postulates of themodel used for the investigation of fracture
and lifetime of the bodies under the conditions of contact interaction of fretting
fatigue [12, 47], we model a damaged element of the fretting couple by an elastic
half-plane weakened by an inclined edge rectilinear crack (cut) (Fig. 5.42). We refer
this half-plane to themain coordinate system xOy.The crack is referred to an auxiliary
system x1O1y1. The action of the second element (counterbody) ismodeled by normal
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stationary forces p(x,λ) and alternating tangential forces q(x, f,λ) applied to the half-
plane boundary.

We also assume that the normal compression forces are distributed according to
the elliptic (Hertzian) law over a part of the half-plane boundary of length 2a and the
tangential forces in the case of full slipping (without sticking) between the bodies
are connected with the normal forces by the Amontons–Coulomb law, i.e.,

p(x, λ) = p0

√
1 − (x / a − λ)2, q±(x, λ) = ± f p(x, λ); |x − x0| ≤ a;

(5.21)

here, p0 is the maximum level of model contact pressure and λ = x0/a is a parameter
characterizing the distance of from the middle of the contact section to the crack
mouth.

In general, depending on the location of the load relative to the crack mouth
(parameter λ), its relative length (ε = l/a), the angle of inclination β to the edge
of the half-plane, and the friction coefficients f and f c between the elements of the
fretting pair and the crack faces, respectively, the crack in a contact cycle may be
either completely open (the faces are not in contact) or closed (partially or completely)
with different contact conditions of (sliding with friction or sticking).

In what follows, we consider a somewhat simplified statement of the problem,
namely, either the crack faces do not contact and are free of loads, or they contact
with friction over the entire crack length. The corresponding boundary conditions
take the form [13]

N±(x1) + iT±(x1) = 0, 0 ≤ x1 ≤ l, (5.22)

or

v+(x1) − v−(x1) = 0, T±(x1) = fcsign
[
T±(x1)

] ∣∣ N±(x1)
∣∣, 0 ≤ x1 ≤ l;

(5.23)

here, N± and T± are the normal and tangential components of the forces at the crack
faces, respectively, v ± are normal displacements of the faces in the local coordinate
system x1O1y1, and f c is the coefficient of friction between the faces. In the first case,
we reduce the problem to the SIE (3.151) and, in the second case, to the system of
SIE (3.219) and (3.220) which are solved by the method of mechanical quadratures.

On the basis of the solutions of the SIE, we determine the SIFs K I and K II and, by
using the relations of the σθ- and τθ-criteria of local fracture (2.21) and (2.24), find
the mixed-type SIFs K Iθ and K IIθ. Since the contact interaction of fretting fatigue
has a cyclic character, it is also necessary to determine the SIF ranges �K Iθ and
�K IIθ controlling the process of fatigue crack propagation by the mechanisms of
normal opening and transverse shear, respectively. In this case, we assume [12, 47]
that, for any distance (λ = x0/a) between the model load and the crack mouth,
�KIIθ = �KII = |K+

II −K−
II |, where K+

II and K−
II are determined by the positive and
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Fig. 5.43 Dependences of the SIF FII on the location of the counterbody in the negative (a) and
positive (b) phases: (1) for smooth contact of the crack faces (f c = 0.0), (2) for the contact of the
faces with friction (f c = 0.1), (3) in the absence of the contact of faces; f = 0.5

Fig. 5.44 Dependences of
the SIFs FI and FIθ on the
location of the counterbody.
The solid lines correspond to
the negative phase of a cycle,
while the dashed lines
correspond to the positive
phase; f = 0.5

negative phases of the contact cycle, the shear crack in the contact zone propagates
along its continuation and the angle of its initial deviation is θ∗

τ = 0. For the case of
opening mechanism, we get�KIθ = maxKIθ = max

{
K+

Iθ , K
−
Iθ

}
, and the subsequent

process of crack propagation is determined by the angle θ∗
σ (Fig. 5.42) on the basis

of the well-known relations of the σθ-criterion.
In view of the necessity of investigation of the variations of SIF depending on

the location of the model contact load (counterbody) relative to the crack mouth and
its orientation, we choose large ranges of the parmeters λ and β, namely, the angle
between the crack and the boundary of the half-plane β = 20°…160° and the distance
λ = x0/a from the middle of the contact section and the crack mouth varied within
the range |λ| ≤ 4.0. The friction coefficients between the elements of the fretting
couple and the crack faces are set equal to f = 0.5 and f c = 0 or 0.1, respectively.
The relative crack length is equal to ε = l/a = 0.2. The results of evaluation of the
quantitiesK I andK II are shown in Figs. 5.43, 5.44 and 5.45 and Tables 5.13 and 5.14
in the normalized form, i.e., F = K

/(
p0

√
πa

)
.

As follows from Fig. 5.43a, b, the presence of contact between the crack faces
enables us to determine the SIFK II muchmore exactly, while the presence of friction
between the crack faces strongly decreases the value of |K II|.
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Fig. 5.45 Dependences of
the �FII range on the
location of the counterbody;
ε = 0.2; f c = 0; f = 0.5;
λ = x0/a

Table 5.13 Dependence of the values ofmax�FII(λ)= �FII(λ∗
τ) and the parameterλ∗

τ of location
of the center of the contact section for which this maximum is realized on the orientation of the
crack

β, deg. f c = 0.0 f c = 0.1

max �FII λ∗
τ max �FII λ∗

τ

20 0.4561 0.70 0.3767 0.79

30 0.3922 0.86 0.3303 0.93

40 0.3272 0.95 0.2752 0.98

50 0.3050 −0.79 0.2851 −0.87

60 0.3427 −0.66 0.3027 −0.79

70 0.3704 −0.49 0.3119 −0.60

80 0.3875 −0.26 0.3145 −0.34

90 0.3933 0.00 0.3146 0.00

Table 5.14 Maximum values of the SIFs FI and FIθ in a contact cycle for the edge arbitrarily
oriented crack, the distance from the crack mouth to the middle of the contact section λ∗

σ for which

max FIθ is attained, and the corresponding angles of initial crack deviation θ∗
σ; ε = 0.2

β, deg. f = –0.5 f = + 0.5

max FI max FIθ λ∗
σ θ∗

σ, rad. max FI max FIθ λ∗
σ θ∗

σ, rad.

20 0.0587 0.1100 −0.97 −1.20 0.0926 0.1324 1.23 −0.80

30 0.0827 0.1452 −0.95 −1.18 0.1188 0.1533 1.24 −0.71

40 0.1058 0.1618 −0.92 −1.20 0.1394 0.1769 1.01 −1.21

50 0.1259 0.1761 −0.88 −1.20 0.1539 0.1812 0.95 −1.15

60 0.1426 0.1763 −0.83 −1.23 0.1635 0.1707 1.23 −0.33

70 0.1547 0.1687 −1.07 −0.48 0.1685 0.1702 1.21 −0.16

80 0.1618 0.1695 −1.12 −0.35 0.1696 0.1696 1.18 0.02

90 0.1672 0.1695 −1.15 −0.19 0.1672 0.1695 1.15 0.19



www.manaraa.com

308 5 Fretting Fatigue Fracture

Fig. 5.46 Scheme of location and orientation of shear edge cracks along the contact zone (section)
under the counterbody according to data from Table 5.13; f = 0.5; f c = 0; ε = 0.2

In Fig. 5.43, we give the SIF FII within the entire range of the parameter λ. At
the same time, in finding max FIθ and max �FII presented in the tables, we take into
account the fact that these values of SIF are physically meaningful only within the
ranges where FI > 0. The quantities with FI < 0 were found from the solution of the
problem for an open crack without taking into account the contact of its faces (see
Fig. 5.44).

In Fig. 5.45, we illustrate the procedure of finding themaximum value of the range
�FII for a crack of given orientation (here, β = π/6) and the location of counterbody
(the values of parameter λ = λ∗

τ) for which this maximum is realized. For the angles
β = 20°…90°, these data are presented in Table 5.13. At the same time, for the angles
β = 90°…160°, the corresponding results can be obtained by the mirror imaging.

By using the data fromTable 5.13, in Fig. 5.46,we depict the scheme of orientation
and location (along the contact section) of shear edge cracks corresponding to the
maximum values of the SIF range for K II attained in a single contacting cycle for
fixed values of the parameters f, f c, and ε. This scheme gives us the distances from the
middle (boundaries) of the section under loading (counterbody), where the initiation
of shear macrocracks is most probable, as well as the directions of their propagation
(along their continuation).

The data presented in Table 5.13 enable us to conclude that, in the contact zone
(section) under the counterbody, we mainly observe the formation of shear cracks of
different orientations closer to the ends of this zone. The simultaneous propagation
of these cracks promotes the development of the process of crumbling of the contact
surface. However, the process of crack propagation at angles of 20° and 160° proves
to be most probable. It is possible to assume that these cracks form the so-called
“fretting tongues” in the course of their development (see Fig. 5.46). We also see that
the increase in the friction coefficient f c between the crack faces leads to a decrease
in the SIF |K II| and in max �K II and the attainment of the indicated maximum value
closer to the edges of the counterbody.

The analysis of the data presented in Table 5.14 shows that the highest values of
max FIθ are attained for the cracks oriented at the angles β = 50…60° (and, by the
mirror imaging, at β = 120…130°). Hence, these cracks prove to be most dangerous
from the viewpoint of formation of mode I cracks. It is also easy to see that these
cracks are mainly initiated beyond the contact zone and may propagate toward this
zone.

Note that it is possible to predict the residual lifetime of tribojoints under the
operating conditions corresponding to fretting fatigue by using the results presented
in this chapter on the basis of the available characteristics of cyclic crack growth
resistance of the materials of elements of the fretting pair.
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5.7 Conclusions

1. We propose a computational model for the investigation of the fracture processes
and the evaluation of the residual lifetime (in terms of the crack resistance) of the
nearsurface layer of the contact zone of bodies operating under the conditions of
fretting fatigue.

For the scheme of contact interaction in which the process of fretting between
two bodies pressed to each other is caused, in the analyzed body, by the oscilla-
tory displacements of the counterbody with its full slipping (without sticking), our
calculations give the following results:

• For small lengths of the initial edge cracks (ε = l0/a ≈ 0.1…0.2) whose mouth
appear on the boundary of the body outside the contact section, the stress intensity
factorsK I andK II near the crack tips reach their maximal values if the crackmouth
is located near the edge of the contact load (λ = x0/a ≈ 1.0).

• The friction coefficient in contact between the bodies plays an important role in the
subsequent propagation of the edge crack. For low friction, the crack propagates
into the bulk of the material and deviates from the contact zone. For higher levels
of friction, the crack paths are directed toward the contact zone.

• In the course of cracks propagation, the SIF in the vicinity of their tips vanish, and
the cracks stop.

• The decrease in the radius of rounding of the edges of counterbody (from 100 to
0.1 mm) insignificantly increases (by at most 10%) the maximum values of the
SIF K I and noticeably (sometimes by a factor of two) increases the maximum
values of SIF | K II | at the tip of an edge crack in the main body of the contact
couple (pair). This influence is especially pronounced for small relative lengths
of the edge cracks (ε = l/b = 0.1) and decreases as their length increases and
as the counterbody moves away from the crack mouth (the parameter λ = x0/b
increases). The functions K I,II(λ) for a model contact load taking into account
the effect of rounding of the edges of counterbody and a model loading with
uniformly distributed pressure are qualitatively similar and quantitatively rough.
This fact theoretically confirms the possibility of application of a simpler model
load (uniform distribution).

2. It is shown that the edge cracks under the counterbody filled eitherwith oil orwith
fretting products mainly develop to form dish-shaped pittings (cavities). Simulta-
neously with pitting, the main crack may propagate from the edge crack into the
bulk of the material. The formation of pitting near the edge (end) of the contact
section or on the boundary proves to be most probable. The obtained results are
in good agreement with the experimental data presented in the monograph [66].

Within the framework of the computational model aimed at the analysis of the
lifetime and fracture processes in the bodies contacting under conditions of fretting
fatigue [14, 15], we simulate and study the formation of pitting in these bodies.
It is shown that pitting is initiated and propagates from the surface macrocrack
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preliminarily formed in the contact section in the course of cyclic filling and wedging
of the crack by fretting products. The wedging action of these products is simulated
by a uniformly distributed normal pressure in the crack. The action of the counterbody
is modeled by a constant pressure in the contact section and alternating (in a contact
cycle) tangential forces responsible for the cyclic character of the load and the stress-
strain state in the contact zone and near the crack.

3. We investigate the SIF and the paths of edge cracks in elements of the fretting
couples in the presence of the sections of sticking and slipping in contact between
the bodies.

We established the following facts:

• As the relative length (c/a) of the section of sticking appears and increases in
contact between the bodies, the stress intensity factors near the tip of an edge
initially rectilinear crack (initiated in the contact zone) significantly decrease: For
c/a = 0.57, the maximum SIF become lower, on the average, by one-third and,
for c/a = 0.85, almost by an order of magnitude as compared with the case of full
slipping.

• As the section of sticking enlarges, the crack path deviates from the contact zone
as in the case of decrease in the friction coefficient f.

• The crack growth paths weakly depend on the initial angle of their inclination
(β) to the boundary of the half-plane edge and the distance between the crack
mouth and the boundary of the contact load and have asymptotes determined by
the friction coefficient f.

• The stress intensity factors both for the initial cracks and along their trajectories
in the fretting zone become lower as the level of friction decreases in the case of
full slipping between the contacting bodies and as the sticking section increases
for their partial slipping. This feature is in good agreement with the well-known
approaches [57] to the structural and technological enhancement of increases the
fretting fatigue strength either by removing the displacements of one surface over
the other or, on the contrary, by the facilitation of these displacements with an aim
to guarantee their realization with minimum possible friction.

4. It is established that, under the conditions of fretting fatigue, a significant influ-
ence on the character of the fracture of the contact surface and the sizes of
crumbling particles is exerted by the friction coefficient, the distribution of tan-
gential forces in contact between the bodies (in particular, in the presence of the
section of sticking), the characteristics of cyclic crack growth resistance of the
materials of contacting bodies, and the presence of working products (oil, water,
powder-like fretting products, etc.) in the contact zone.
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